# Copyright(c) Microsoft Corporation. # Licensed under the MIT license. library(azuremlsdk) library(jsonlite) ws <- load_workspace_from_config() # Register the model model <- register_model(ws, model_path = "project_files/model.rds", model_name = "model.rds") # Create environment r_env <- r_environment(name = "r_env") # Create inference config inference_config <- inference_config( entry_script = "score.R", source_directory = "project_files", environment = r_env) # Create ACI deployment config deployment_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 1) # Deploy the web service service <- deploy_model(ws, 'rservice', list(model), inference_config, deployment_config) wait_for_deployment(service, show_output = TRUE) # If you encounter any issue in deploying the webservice, please visit # https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment # Inferencing # versicolor plant <- data.frame(Sepal.Length = 6.4, Sepal.Width = 2.8, Petal.Length = 4.6, Petal.Width = 1.8) # setosa plant <- data.frame(Sepal.Length = 5.1, Sepal.Width = 3.5, Petal.Length = 1.4, Petal.Width = 0.2) # virginica plant <- data.frame(Sepal.Length = 6.7, Sepal.Width = 3.3, Petal.Length = 5.2, Petal.Width = 2.3) # Test the web service predicted_val <- invoke_webservice(service, toJSON(plant)) predicted_val # Delete the web service delete_webservice(service)