{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved.\n", "\n", "Licensed under the MIT License." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Uncomment these if explanation packages are not already installed in your environment\n", "#!pip install --upgrade azureml-sdk[explain]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Explain a model with the AML explain-model package\n", "\n", "1. Train a SVM model using Scikit-learn\n", "2. Run 'explain_model' in local mode, which doesn't contact any Azure services\n", "3. Run 'explain_model' with AML Run History, which leverages Run History Service to store and manage the explanation data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Disclaimer: this notebook is a preview of model explainability, and the APIs shown below are subject to breaking changes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train a SVM model, which we will try to explain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Import Iris dataset\n", "from sklearn import datasets\n", "iris = datasets.load_iris()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Split data into train and test\n", "from sklearn.model_selection import train_test_split\n", "x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Import scikit learn, fit a SVM model\n", "def create_scikit_learn_model(X, y):\n", " from sklearn import svm\n", " clf = svm.SVC(gamma=0.001, C=100., probability=True)\n", " model = clf.fit(X, y)\n", " return model\n", "model = create_scikit_learn_model(x_train, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run model explainer locally" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.explain.model.tabular_explainer import TabularExplainer" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import time\n", "start = time.time()\n", "\n", "explainer = TabularExplainer(model, x_train, features=iris.feature_names)\n", "global_explanation = explainer.explain_global(x_test)\n", "\n", "# importance values for each class, test example, and feature (local importance)\n", "local_imp_values = global_explanation.local_importance_values\n", "# base prediction with feature importances ignored\n", "expected_values = global_explanation.expected_values\n", "# global feature importance information\n", "global_imp_values = global_explanation.global_importance_values\n", "ranked_global_imp_names = global_explanation.get_ranked_global_names()\n", "# global per-class feature importance information\n", "per_class_imp_values = global_explanation.per_class_values\n", "ranked_per_class_imp_names = global_explanation.get_ranked_per_class_names()\n", "\n", "end = time.time()\n", "print(end - start)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run model explainer with AML Run History" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import azureml.core\n", "from azureml.core import Workspace, Experiment, Run\n", "from azureml.explain.model.tabular_explainer import TabularExplainer\n", "from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient\n", "# Check core SDK version number\n", "print(\"SDK version:\", azureml.core.VERSION)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ws = Workspace.from_config()\n", "print('Workspace name: ' + ws.name, \n", " 'Azure region: ' + ws.location, \n", " 'Subscription id: ' + ws.subscription_id, \n", " 'Resource group: ' + ws.resource_group, sep = '\\n')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "experiment_name = 'explain_model'\n", "experiment = Experiment(ws, experiment_name)\n", "run = experiment.start_logging()\n", "client = ExplanationClient.from_run(run)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import time\n", "start = time.time()\n", "explainer = TabularExplainer(model, x_train, features=iris.feature_names, classes=iris.target_names)\n", "explanation = explainer.explain_global(x_test)\n", "client.upload_model_explanation(explanation)\n", "end = time.time()\n", "print(end - start)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "explanation_from_run = client.download_model_explanation()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# global feature importance information\n", "global_imp_values = explanation_from_run.global_importance_values\n", "global_imp_names = explanation_from_run.get_ranked_global_names()\n", "# global per-class feature importance information\n", "per_class_imp_values = explanation_from_run.per_class_values\n", "per_class_imp_names = explanation_from_run.get_ranked_per_class_names()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## This visualization is unsupported, and is not guaranteed to work in the future" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Get the shap values and explore locally\n", "import shap\n", "import numpy as np\n", "shap.initjs()\n", "display(shap.force_plot(explanation_from_run.expected_values[1], np.asarray(explanation_from_run.local_importance_values[1]), x_test))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run.complete()" ] } ], "metadata": { "authors": [ { "name": "wamartin" } ], "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }