{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Breast cancer diagnosis classification with scikit-learn (run model explainer locally)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved.\n", "\n", "Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Explain a model with the AML explain-model package\n", "\n", "1. Train a SVM classification model using Scikit-learn\n", "2. Run 'explain_model' with full data in local mode, which doesn't contact any Azure services\n", "3. Run 'explain_model' with summarized data in local mode, which doesn't contact any Azure services\n", "4. Visualize the global and local explanations with the visualization dashboard." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import load_breast_cancer\n", "from sklearn import svm\n", "from azureml.explain.model.tabular_explainer import TabularExplainer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Run model explainer locally with full data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the breast cancer diagnosis data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "breast_cancer_data = load_breast_cancer()\n", "classes = breast_cancer_data.target_names.tolist()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Split data into train and test\n", "from sklearn.model_selection import train_test_split\n", "x_train, x_test, y_train, y_test = train_test_split(breast_cancer_data.data, breast_cancer_data.target, test_size=0.2, random_state=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train a SVM classification model, which you want to explain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "clf = svm.SVC(gamma=0.001, C=100., probability=True)\n", "model = clf.fit(x_train, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain predictions on your local machine" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tabular_explainer = TabularExplainer(model, x_train, features=breast_cancer_data.feature_names, classes=classes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain overall model predictions (global explanation)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Passing in test dataset for evaluation examples - note it must be a representative sample of the original data\n", "# x_train can be passed as well, but with more examples explanations will take longer although they may be more accurate\n", "global_explanation = tabular_explainer.explain_global(x_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Sorted SHAP values\n", "print('ranked global importance values: {}'.format(global_explanation.get_ranked_global_values()))\n", "# Corresponding feature names\n", "print('ranked global importance names: {}'.format(global_explanation.get_ranked_global_names()))\n", "# feature ranks (based on original order of features)\n", "print('global importance rank: {}'.format(global_explanation.global_importance_rank))\n", "# per class feature names\n", "print('ranked per class feature names: {}'.format(global_explanation.get_ranked_per_class_names()))\n", "# per class feature importance values\n", "print('ranked per class feature values: {}'.format(global_explanation.get_ranked_per_class_values()))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dict(zip(global_explanation.get_ranked_global_names(), global_explanation.get_ranked_global_values()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain overall model predictions as a collection of local (instance-level) explanations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# feature shap values for all features and all data points in the training data\n", "print('local importance values: {}'.format(global_explanation.local_importance_values))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain local data points (individual instances)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# explain the first member of the test set\n", "instance_num = 0\n", "local_explanation = tabular_explainer.explain_local(x_test[instance_num,:])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# get the prediction for the first member of the test set and explain why model made that prediction\n", "prediction_value = clf.predict(x_test)[instance_num]\n", "\n", "sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value]\n", "sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value]\n", "\n", "\n", "dict(zip(sorted_local_importance_names, sorted_local_importance_values))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2. Load visualization dashboard" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.contrib.explain.model.visualize import ExplanationDashboard" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ExplanationDashboard(global_explanation, model, x_test)" ] } ], "metadata": { "authors": [ { "name": "mesameki" } ], "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }