import os import torch import json import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def init(): global net global classes model_filename = 'cifar_net.pth' model_path = os.path.join(os.environ['AZUREML_MODEL_DIR'], model_filename) net = Net() net.load_state_dict(torch.load(model_path)) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def run(data): data = json.loads(data) images = torch.FloatTensor(data['data']) outputs = net(images) _, predicted = torch.max(outputs, 1) result = [classes[predicted[j]] for j in range(4)] result_json = json.dumps({"predictions": result}) # You can return any JSON-serializable object. return result_json