import argparse import os import azureml.core from datetime import datetime import pandas as pd import pytz from azureml.core import Dataset, Model from azureml.core.run import Run, _OfflineRun from azureml.core import Workspace run = Run.get_context() ws = None if type(run) == _OfflineRun: ws = Workspace.from_config() else: ws = run.experiment.workspace print("Check for new data.") parser = argparse.ArgumentParser("split") parser.add_argument("--ds_name", help="input dataset name") parser.add_argument("--model_name", help="name of the deployed model") args = parser.parse_args() print("Argument 1(ds_name): %s" % args.ds_name) print("Argument 2(model_name): %s" % args.model_name) # Get the latest registered model try: model = Model(ws, args.model_name) last_train_time = model.created_time print("Model was last trained on {0}.".format(last_train_time)) except Exception: print("Could not get last model train time.") last_train_time = datetime.min.replace(tzinfo=pytz.UTC) train_ds = Dataset.get_by_name(ws, args.ds_name) dataset_changed_time = train_ds.data_changed_time if not dataset_changed_time > last_train_time: print("Cancelling run since there is no new data.") run.parent.cancel() else: # New data is available since the model was last trained print("Dataset was last updated on {0}. Retraining...".format(dataset_changed_time))