{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Boston Housing Price Prediction with scikit-learn (run model explainer locally)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved.\n", "\n", "Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Explain a model with the AML explain-model package\n", "\n", "1. Train a GradientBoosting regression model using Scikit-learn\n", "2. Run 'explain_model' with full dataset in local mode, which doesn't contact any Azure services.\n", "3. Run 'explain_model' with summarized dataset in local mode, which doesn't contact any Azure services." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn import datasets\n", "from sklearn.ensemble import GradientBoostingRegressor\n", "from azureml.explain.model.tabular_explainer import TabularExplainer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Run model explainer locally with full data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the Boston house price data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "boston_data = datasets.load_boston()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Split data into train and test\n", "from sklearn.model_selection import train_test_split\n", "x_train, x_test, y_train, y_test = train_test_split(boston_data.data, boston_data.target, test_size=0.2, random_state=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train a GradientBoosting Regression model, which you want to explain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "clf = GradientBoostingRegressor(n_estimators=100, max_depth=4,\n", " learning_rate=0.1, loss='huber',\n", " random_state=1)\n", "model = clf.fit(x_train, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain predictions on your local machine" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tabular_explainer = TabularExplainer(model, x_train, features = boston_data.feature_names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain overall model predictions (global explanation)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Passing in test dataset for evaluation examples - note it must be a representative sample of the original data\n", "# x_train can be passed as well, but with more examples explanations will take longer although they may be more accurate\n", "global_explanation = tabular_explainer.explain_global(x_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "help(global_explanation)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Sorted SHAP values \n", "print('ranked global importance values: {}'.format(global_explanation.get_ranked_global_values()))\n", "# Corresponding feature names\n", "print('ranked global importance names: {}'.format(global_explanation.get_ranked_global_names()))\n", "# feature ranks (based on original order of features)\n", "print('global importance rank: {}'.format(global_explanation.global_importance_rank))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dict(zip(global_explanation.get_ranked_global_names(), global_explanation.get_ranked_global_values()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain overall model predictions as a collection of local (instance-level) explanations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# feature shap values for all features and all data points in the training data\n", "print('local importance values: {}'.format(global_explanation.local_importance_values))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Explain local data points (individual instances)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "local_explanation = tabular_explainer.explain_local(x_test[0,:])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# local feature importance information\n", "local_importance_values = local_explanation.local_importance_values\n", "print('local importance values: {}'.format(local_importance_values))" ] } ], "metadata": { "authors": [ { "name": "wamartin" } ], "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }