# Copyright 2017 Uber Technologies, Inc. # Licensed under the Apache License, Version 2.0 # Script from horovod/examples: https://github.com/uber/horovod/blob/master/examples/pytorch_mnist.py from __future__ import print_function import argparse import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable import torch.utils.data.distributed import horovod.torch as hvd # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() hvd.init() torch.manual_seed(args.seed) if args.cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} train_dataset = \ datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, num_replicas=hvd.size(), rank=hvd.rank()) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs) test_dataset = \ datasets.MNIST('data-%d' % hvd.rank(), train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) test_sampler = torch.utils.data.distributed.DistributedSampler( test_dataset, num_replicas=hvd.size(), rank=hvd.rank()) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size, sampler=test_sampler, **kwargs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) model = Net() if args.cuda: # Move model to GPU. model.cuda() # Horovod: broadcast parameters. hvd.broadcast_parameters(model.state_dict(), root_rank=0) # Horovod: scale learning rate by the number of GPUs. optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(), momentum=args.momentum) # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters()) def train(epoch): model.train() train_sampler.set_epoch(epoch) for batch_idx, (data, target) in enumerate(train_loader): if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_sampler), 100. * batch_idx / len(train_loader), loss.data[0])) def metric_average(val, name): tensor = torch.FloatTensor([val]) avg_tensor = hvd.allreduce(tensor, name=name) return avg_tensor[0] def test(): model.eval() test_loss = 0. test_accuracy = 0. for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target, size_average=False).data[0] # get the index of the max log-probability pred = output.data.max(1, keepdim=True)[1] test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum() test_loss /= len(test_sampler) test_accuracy /= len(test_sampler) test_loss = metric_average(test_loss, 'avg_loss') test_accuracy = metric_average(test_accuracy, 'avg_accuracy') if hvd.rank() == 0: print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format( test_loss, 100. * test_accuracy)) for epoch in range(1, args.epochs + 1): train(epoch) test()