from azureml.core import ScriptRunConfig def run_rolling_forecast( test_experiment, compute_target, train_run, test_dataset, target_column_name, inference_folder="./forecast", ): train_run.download_file("outputs/model.pkl", inference_folder + "/model.pkl") inference_env = train_run.get_environment() config = ScriptRunConfig( source_directory=inference_folder, script="forecasting_script.py", arguments=[ "--target_column_name", target_column_name, "--test_dataset", test_dataset.as_named_input(test_dataset.name), ], compute_target=compute_target, environment=inference_env, ) run = test_experiment.submit( config, tags={ "training_run_id": train_run.id, "run_algorithm": train_run.properties["run_algorithm"], "valid_score": train_run.properties["score"], "primary_metric": train_run.properties["primary_metric"], }, ) run.log("run_algorithm", run.tags["run_algorithm"]) return run