{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright (c) Microsoft Corporation. All rights reserved.\n", "\n", "Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 02. Train locally\n", "* Create or load workspace.\n", "* Create scripts locally.\n", "* Create `train.py` in a folder, along with a `my.lib` file.\n", "* Configure & execute a local run in a user-managed Python environment.\n", "* Configure & execute a local run in a system-managed Python environment.\n", "* Configure & execute a local run in a Docker environment.\n", "* Query run metrics to find the best model\n", "* Register model for operationalization." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Prerequisites\n", "Make sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Check core SDK version number\n", "import azureml.core\n", "\n", "print(\"SDK version:\", azureml.core.VERSION)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initialize Workspace\n", "\n", "Initialize a workspace object from persisted configuration." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.core.workspace import Workspace\n", "\n", "ws = Workspace.from_config()\n", "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create An Experiment\n", "**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.core import Experiment\n", "experiment_name = 'train-on-local'\n", "exp = Experiment(workspace=ws, name=experiment_name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## View `train.py`\n", "\n", "`train.py` is already created for you." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "with open('./train.py', 'r') as f:\n", " print(f.read())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note `train.py` also references a `mylib.py` file." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "with open('./mylib.py', 'r') as f:\n", " print(f.read())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Configure & Run\n", "### User-managed environment\n", "Below, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.core.runconfig import RunConfiguration\n", "\n", "# Editing a run configuration property on-fly.\n", "run_config_user_managed = RunConfiguration()\n", "\n", "run_config_user_managed.environment.python.user_managed_dependencies = True\n", "\n", "# You can choose a specific Python environment by pointing to a Python path \n", "#run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Submit script to run in the user-managed environment\n", "Note whole script folder is submitted for execution, including the `mylib.py` file." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.core import ScriptRunConfig\n", "\n", "src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed)\n", "run = exp.submit(src)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Get run history details" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Block to wait till run finishes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run.wait_for_completion(show_output=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### System-managed environment\n", "You can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azureml.core.conda_dependencies import CondaDependencies\n", "\n", "run_config_system_managed = RunConfiguration()\n", "\n", "run_config_system_managed.environment.python.user_managed_dependencies = False\n", "run_config_system_managed.auto_prepare_environment = True\n", "\n", "# Specify conda dependencies with scikit-learn\n", "cd = CondaDependencies.create(conda_packages=['scikit-learn'])\n", "run_config_system_managed.environment.python.conda_dependencies = cd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Submit script to run in the system-managed environment\n", "A new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "src = ScriptRunConfig(source_directory=\"./\", script='train.py', run_config=run_config_system_managed)\n", "run = exp.submit(src)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Get run history details" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Block and wait till run finishes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run.wait_for_completion(show_output = True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Docker-based execution\n", "**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.\n", "\n", "NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.\n", "\n", "You can also ask the system to pull down a Docker image and execute your scripts in it." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run_config_docker = RunConfiguration()\n", "run_config_docker.environment.python.user_managed_dependencies = False\n", "run_config_docker.auto_prepare_environment = True\n", "run_config_docker.environment.docker.enabled = True\n", "\n", "# use the default CPU-based Docker image from Azure ML\n", "run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n", "\n", "# Specify conda dependencies with scikit-learn\n", "cd = CondaDependencies.create(conda_packages=['scikit-learn'])\n", "run_config_docker.environment.python.conda_dependencies = cd\n", "\n", "src = ScriptRunConfig(source_directory=\"./\", script='train.py', run_config=run_config_docker)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Submit script to run in the system-managed environment\n", "A new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies.\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import subprocess\n", "\n", "# Check if Docker is installed and Linux containers are enables\n", "if subprocess.run(\"docker -v\", shell=True) == 0:\n", " out = subprocess.check_output(\"docker system info\", shell=True, encoding=\"ascii\").split(\"\\n\")\n", " if not \"OSType: linux\" in out:\n", " print(\"Switch Docker engine to use Linux containers.\")\n", " else:\n", " run = exp.submit(src)\n", "else:\n", " print(\"Docker engine not installed.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Get run history details\n", "run" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run.wait_for_completion(show_output=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Use a custom Docker image\n", "\n", "You can also specify a custom Docker image if you don't want to use the default image provided by Azure ML.\n", "\n", "```python\n", "# use an image available in Docker Hub without authentication\n", "run_config_docker.environment.docker.base_image = \"continuumio/miniconda3\"\n", "\n", "# or, use an image available in a private Azure Container Registry\n", "run_config_docker.environment.docker.base_image = \"mycustomimage:1.0\"\n", "run_config_docker.environment.docker.base_image_registry.address = \"myregistry.azurecr.io\"\n", "run_config_docker.environment.docker.base_image_registry.username = \"username\"\n", "run_config_docker.environment.docker.base_image_registry.password = \"password\"\n", "```\n", "\n", "When you are using a custom Docker image, you might already have your environment setup properly in a Python environment in the Docker image. In that case, you can skip specifying conda dependencies, and just use `user_managed_dependencies` option instead:\n", "```python\n", "run_config_docker.environment.python.user_managed_dependencies = True\n", "# path to the Python environment in the custom Docker image\n", "run_config.environment.python.interpreter_path = '/opt/conda/bin/python'\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Query run metrics" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "query history", "get metrics" ] }, "outputs": [], "source": [ "# get all metris logged in the run\n", "run.get_metrics()\n", "metrics = run.get_metrics()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's find the model that has the lowest MSE value logged." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "best_alpha = metrics['alpha'][np.argmin(metrics['mse'])]\n", "\n", "print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format(\n", " min(metrics['mse']), \n", " best_alpha\n", "))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also list all the files that are associated with this run record" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run.get_file_names()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We know the model `ridge_0.40.pkl` is the best performing model from the eariler queries. So let's register it with the workspace." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# supply a model name, and the full path to the serialized model file.\n", "model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(model.name, model.version, model.url)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now you can deploy this model following the example in the 01 notebook." ] } ], "metadata": { "authors": [ { "name": "haining" } ], "kernelspec": { "display_name": "Python 3.6", "language": "python", "name": "python36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }