from azureml.core.model import Model, Dataset from azureml.core.run import Run, _OfflineRun from azureml.core import Workspace import argparse parser = argparse.ArgumentParser() parser.add_argument("--model_name") parser.add_argument("--model_path") parser.add_argument("--ds_name") args = parser.parse_args() print("Argument 1(model_name): %s" % args.model_name) print("Argument 2(model_path): %s" % args.model_path) print("Argument 3(ds_name): %s" % args.ds_name) run = Run.get_context() ws = None if type(run) == _OfflineRun: ws = Workspace.from_config() else: ws = run.experiment.workspace train_ds = Dataset.get_by_name(ws, args.ds_name) datasets = [(Dataset.Scenario.TRAINING, train_ds)] # Register model with training dataset model = Model.register(workspace=ws, model_path=args.model_path, model_name=args.model_name, datasets=datasets) print("Registered version {0} of model {1}".format(model.version, model.name))