# This script loads a dataset of which the last column is supposed to be the # class and logs the accuracy library(azuremlsdk) library(caret) library(datasets) iris_data <- data(iris) summary(iris_data) in_train <- createDataPartition(y = iris_data$Species, p = .8, list = FALSE) train_data <- iris_data[in_train,] test_data <- iris_data[-in_train,] # Run algorithms using 10-fold cross validation control <- trainControl(method = "cv", number = 10) metric <- "Accuracy" set.seed(7) model <- train(Species ~ ., data = train_data, method = "lda", metric = metric, trControl = control) predictions <- predict(model, test_data) conf_matrix <- confusionMatrix(predictions, test_data$Species) message(conf_matrix) log_metric_to_run(metric, conf_matrix$overall["Accuracy"])