mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 09:37:04 -05:00
35 lines
1.1 KiB
Python
35 lines
1.1 KiB
Python
import pickle
|
|
import json
|
|
import numpy as np
|
|
from sklearn.externals import joblib
|
|
from sklearn.linear_model import Ridge
|
|
from azureml.core.model import Model
|
|
|
|
from inference_schema.schema_decorators import input_schema, output_schema
|
|
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
|
|
|
|
|
|
def init():
|
|
global model
|
|
# note here "sklearn_regression_model.pkl" is the name of the model registered under
|
|
# this is a different behavior than before when the code is run locally, even though the code is the same.
|
|
model_path = Model.get_model_path('sklearn_regression_model.pkl')
|
|
# deserialize the model file back into a sklearn model
|
|
model = joblib.load(model_path)
|
|
|
|
|
|
input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])
|
|
output_sample = np.array([3726.995])
|
|
|
|
|
|
@input_schema('data', NumpyParameterType(input_sample))
|
|
@output_schema(NumpyParameterType(output_sample))
|
|
def run(data):
|
|
try:
|
|
result = model.predict(data)
|
|
# you can return any datatype as long as it is JSON-serializable
|
|
return result.tolist()
|
|
except Exception as e:
|
|
error = str(e)
|
|
return error
|