Files
2018-12-03 17:38:20 -05:00

30 lines
881 B
Python

import pickle
import json
import numpy as np
from sklearn.externals import joblib
from sklearn.linear_model import Ridge
from azureml.core.model import Model
def init():
global model
# note here "best_model" is the name of the model registered under the workspace
# this call should return the path to the model.pkl file on the local disk.
model_path = Model.get_model_path(model_name='best_model')
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
# note you can pass in multiple rows for scoring
def run(raw_data):
try:
data = json.loads(raw_data)['data']
data = np.array(data)
result = model.predict(data)
# you can return any data type as long as it is JSON-serializable
return result.tolist()
except Exception as e:
result = str(e)
return result