mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 09:37:04 -05:00
239 lines
6.8 KiB
Python
239 lines
6.8 KiB
Python
# Copyright (c) 2017 Facebook, Inc. All rights reserved.
|
|
# BSD 3-Clause License
|
|
#
|
|
# Script adapted from:
|
|
# https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
|
|
# ==============================================================================
|
|
|
|
# imports
|
|
import torch
|
|
import torchvision
|
|
import torchvision.transforms as transforms
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import os
|
|
import argparse
|
|
|
|
|
|
# define network architecture
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 32, 3)
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
self.conv2 = nn.Conv2d(32, 64, 3)
|
|
self.conv3 = nn.Conv2d(64, 128, 3)
|
|
self.fc1 = nn.Linear(128 * 6 * 6, 120)
|
|
self.dropout = nn.Dropout(p=0.2)
|
|
self.fc2 = nn.Linear(120, 84)
|
|
self.fc3 = nn.Linear(84, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.conv1(x))
|
|
x = self.pool(F.relu(self.conv2(x)))
|
|
x = self.pool(F.relu(self.conv3(x)))
|
|
x = x.view(-1, 128 * 6 * 6)
|
|
x = self.dropout(F.relu(self.fc1(x)))
|
|
x = F.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
def train(train_loader, model, criterion, optimizer, epoch, device, print_freq, rank):
|
|
running_loss = 0.0
|
|
for i, data in enumerate(train_loader, 0):
|
|
# get the inputs; data is a list of [inputs, labels]
|
|
inputs, labels = data[0].to(device), data[1].to(device)
|
|
|
|
# zero the parameter gradients
|
|
optimizer.zero_grad()
|
|
|
|
# forward + backward + optimize
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
# print statistics
|
|
running_loss += loss.item()
|
|
if i % print_freq == 0: # print every print_freq mini-batches
|
|
print(
|
|
"Rank %d: [%d, %5d] loss: %.3f"
|
|
% (rank, epoch + 1, i + 1, running_loss / print_freq)
|
|
)
|
|
running_loss = 0.0
|
|
|
|
|
|
def evaluate(test_loader, model, device):
|
|
classes = (
|
|
"plane",
|
|
"car",
|
|
"bird",
|
|
"cat",
|
|
"deer",
|
|
"dog",
|
|
"frog",
|
|
"horse",
|
|
"ship",
|
|
"truck",
|
|
)
|
|
|
|
model.eval()
|
|
|
|
correct = 0
|
|
total = 0
|
|
class_correct = list(0.0 for i in range(10))
|
|
class_total = list(0.0 for i in range(10))
|
|
with torch.no_grad():
|
|
for data in test_loader:
|
|
images, labels = data[0].to(device), data[1].to(device)
|
|
outputs = model(images)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
c = (predicted == labels).squeeze()
|
|
for i in range(10):
|
|
label = labels[i]
|
|
class_correct[label] += c[i].item()
|
|
class_total[label] += 1
|
|
|
|
# print total test set accuracy
|
|
print(
|
|
"Accuracy of the network on the 10000 test images: %d %%"
|
|
% (100 * correct / total)
|
|
)
|
|
|
|
# print test accuracy for each of the classes
|
|
for i in range(10):
|
|
print(
|
|
"Accuracy of %5s : %2d %%"
|
|
% (classes[i], 100 * class_correct[i] / class_total[i])
|
|
)
|
|
|
|
|
|
def main(args):
|
|
# get PyTorch environment variables
|
|
world_size = int(os.environ["WORLD_SIZE"])
|
|
rank = int(os.environ["RANK"])
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
|
|
distributed = world_size > 1
|
|
|
|
# set device
|
|
if distributed:
|
|
device = torch.device("cuda", local_rank)
|
|
else:
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
# initialize distributed process group using default env:// method
|
|
if distributed:
|
|
torch.distributed.init_process_group(backend="nccl")
|
|
|
|
# define train and test dataset DataLoaders
|
|
transform = transforms.Compose(
|
|
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
|
|
)
|
|
|
|
train_set = torchvision.datasets.CIFAR10(
|
|
root=args.data_dir, train=True, download=False, transform=transform
|
|
)
|
|
|
|
if distributed:
|
|
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
|
|
else:
|
|
train_sampler = None
|
|
|
|
train_loader = torch.utils.data.DataLoader(
|
|
train_set,
|
|
batch_size=args.batch_size,
|
|
shuffle=(train_sampler is None),
|
|
num_workers=args.workers,
|
|
sampler=train_sampler,
|
|
)
|
|
|
|
test_set = torchvision.datasets.CIFAR10(
|
|
root=args.data_dir, train=False, download=False, transform=transform
|
|
)
|
|
test_loader = torch.utils.data.DataLoader(
|
|
test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers
|
|
)
|
|
|
|
model = Net().to(device)
|
|
|
|
# wrap model with DDP
|
|
if distributed:
|
|
model = nn.parallel.DistributedDataParallel(
|
|
model, device_ids=[local_rank], output_device=local_rank
|
|
)
|
|
|
|
# define loss function and optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.SGD(
|
|
model.parameters(), lr=args.learning_rate, momentum=args.momentum
|
|
)
|
|
|
|
# train the model
|
|
for epoch in range(args.epochs):
|
|
print("Rank %d: Starting epoch %d" % (rank, epoch))
|
|
if distributed:
|
|
train_sampler.set_epoch(epoch)
|
|
model.train()
|
|
train(
|
|
train_loader,
|
|
model,
|
|
criterion,
|
|
optimizer,
|
|
epoch,
|
|
device,
|
|
args.print_freq,
|
|
rank,
|
|
)
|
|
|
|
print("Rank %d: Finished Training" % (rank))
|
|
|
|
if not distributed or rank == 0:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
model_path = os.path.join(args.output_dir, "cifar_net.pt")
|
|
torch.save(model.state_dict(), model_path)
|
|
|
|
# evaluate on full test dataset
|
|
evaluate(test_loader, model, device)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# setup argparse
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--data-dir", type=str, help="directory containing CIFAR-10 dataset"
|
|
)
|
|
parser.add_argument("--epochs", default=10, type=int, help="number of epochs")
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
default=16,
|
|
type=int,
|
|
help="mini batch size for each gpu/process",
|
|
)
|
|
parser.add_argument(
|
|
"--workers",
|
|
default=2,
|
|
type=int,
|
|
help="number of data loading workers for each gpu/process",
|
|
)
|
|
parser.add_argument(
|
|
"--learning-rate", default=0.001, type=float, help="learning rate"
|
|
)
|
|
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
|
|
parser.add_argument(
|
|
"--output-dir", default="outputs", type=str, help="directory to save model to"
|
|
)
|
|
parser.add_argument(
|
|
"--print-freq",
|
|
default=200,
|
|
type=int,
|
|
help="frequency of printing training statistics",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|