mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-19 17:17:04 -05:00
57 lines
1.7 KiB
Python
57 lines
1.7 KiB
Python
# Copyright (c) Microsoft. All rights reserved.
|
|
# Licensed under the MIT license.
|
|
|
|
import os
|
|
import argparse
|
|
|
|
from sklearn.linear_model import Ridge
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import train_test_split
|
|
from azureml.core.run import Run
|
|
|
|
import numpy as np
|
|
|
|
# sklearn.externals.joblib is removed in 0.23
|
|
try:
|
|
from sklearn.externals import joblib
|
|
except ImportError:
|
|
import joblib
|
|
|
|
os.makedirs('./outputs', exist_ok=True)
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--data-folder', type=str,
|
|
dest='data_folder', help='data folder')
|
|
args = parser.parse_args()
|
|
|
|
print('Data folder is at:', args.data_folder)
|
|
print('List all files: ', os.listdir(args.data_folder))
|
|
|
|
X = np.load(os.path.join(args.data_folder, 'features.npy'))
|
|
y = np.load(os.path.join(args.data_folder, 'labels.npy'))
|
|
|
|
run = Run.get_context()
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.2, random_state=0)
|
|
data = {"train": {"X": X_train, "y": y_train},
|
|
"test": {"X": X_test, "y": y_test}}
|
|
|
|
# list of numbers from 0.0 to 1.0 with a 0.05 interval
|
|
alphas = np.arange(0.0, 1.0, 0.05)
|
|
|
|
for alpha in alphas:
|
|
# Use Ridge algorithm to create a regression model
|
|
reg = Ridge(alpha=alpha)
|
|
reg.fit(data["train"]["X"], data["train"]["y"])
|
|
|
|
preds = reg.predict(data["test"]["X"])
|
|
mse = mean_squared_error(preds, data["test"]["y"])
|
|
run.log('alpha', alpha)
|
|
run.log('mse', mse)
|
|
|
|
model_file_name = 'ridge_{0:.2f}.pkl'.format(alpha)
|
|
with open(model_file_name, "wb") as file:
|
|
joblib.dump(value=reg, filename='outputs/' + model_file_name)
|
|
|
|
print('alpha is {0:.2f}, and mse is {1:0.2f}'.format(alpha, mse))
|