mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-23 11:02:39 -05:00
158 lines
5.8 KiB
Python
158 lines
5.8 KiB
Python
# Copyright 2017 Uber Technologies, Inc.
|
|
# Licensed under the Apache License, Version 2.0
|
|
# Script from horovod/examples: https://github.com/uber/horovod/blob/master/examples/pytorch_mnist.py
|
|
|
|
from __future__ import print_function
|
|
import argparse
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from torchvision import datasets, transforms
|
|
from torch.autograd import Variable
|
|
import torch.utils.data.distributed
|
|
import horovod.torch as hvd
|
|
|
|
# Training settings
|
|
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
|
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
|
|
help='input batch size for training (default: 64)')
|
|
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
|
|
help='input batch size for testing (default: 1000)')
|
|
parser.add_argument('--epochs', type=int, default=10, metavar='N',
|
|
help='number of epochs to train (default: 10)')
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
help='learning rate (default: 0.01)')
|
|
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
|
|
help='SGD momentum (default: 0.5)')
|
|
parser.add_argument('--no-cuda', action='store_true', default=False,
|
|
help='disables CUDA training')
|
|
parser.add_argument('--seed', type=int, default=42, metavar='S',
|
|
help='random seed (default: 42)')
|
|
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
|
|
help='how many batches to wait before logging training status')
|
|
args = parser.parse_args()
|
|
args.cuda = not args.no_cuda and torch.cuda.is_available()
|
|
|
|
hvd.init()
|
|
torch.manual_seed(args.seed)
|
|
|
|
if args.cuda:
|
|
# Horovod: pin GPU to local rank.
|
|
torch.cuda.set_device(hvd.local_rank())
|
|
torch.cuda.manual_seed(args.seed)
|
|
|
|
|
|
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
|
|
train_dataset = \
|
|
datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
]))
|
|
train_sampler = torch.utils.data.distributed.DistributedSampler(
|
|
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
|
|
train_loader = torch.utils.data.DataLoader(
|
|
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
|
|
|
|
test_dataset = \
|
|
datasets.MNIST('data-%d' % hvd.rank(), train=False, transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
]))
|
|
test_sampler = torch.utils.data.distributed.DistributedSampler(
|
|
test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
|
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
|
|
sampler=test_sampler, **kwargs)
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
|
|
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
|
|
self.conv2_drop = nn.Dropout2d()
|
|
self.fc1 = nn.Linear(320, 50)
|
|
self.fc2 = nn.Linear(50, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(F.max_pool2d(self.conv1(x), 2))
|
|
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
|
|
x = x.view(-1, 320)
|
|
x = F.relu(self.fc1(x))
|
|
x = F.dropout(x, training=self.training)
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x)
|
|
|
|
|
|
model = Net()
|
|
|
|
if args.cuda:
|
|
# Move model to GPU.
|
|
model.cuda()
|
|
|
|
# Horovod: broadcast parameters.
|
|
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
|
|
|
|
# Horovod: scale learning rate by the number of GPUs.
|
|
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),
|
|
momentum=args.momentum)
|
|
|
|
# Horovod: wrap optimizer with DistributedOptimizer.
|
|
optimizer = hvd.DistributedOptimizer(
|
|
optimizer, named_parameters=model.named_parameters())
|
|
|
|
|
|
def train(epoch):
|
|
model.train()
|
|
train_sampler.set_epoch(epoch)
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
if args.cuda:
|
|
data, target = data.cuda(), target.cuda()
|
|
data, target = Variable(data), Variable(target)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx % args.log_interval == 0:
|
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
|
epoch, batch_idx * len(data), len(train_sampler),
|
|
100. * batch_idx / len(train_loader), loss.data[0]))
|
|
|
|
|
|
def metric_average(val, name):
|
|
tensor = torch.FloatTensor([val])
|
|
avg_tensor = hvd.allreduce(tensor, name=name)
|
|
return avg_tensor[0]
|
|
|
|
|
|
def test():
|
|
model.eval()
|
|
test_loss = 0.
|
|
test_accuracy = 0.
|
|
for data, target in test_loader:
|
|
if args.cuda:
|
|
data, target = data.cuda(), target.cuda()
|
|
data, target = Variable(data, volatile=True), Variable(target)
|
|
output = model(data)
|
|
# sum up batch loss
|
|
test_loss += F.nll_loss(output, target, size_average=False).data[0]
|
|
# get the index of the max log-probability
|
|
pred = output.data.max(1, keepdim=True)[1]
|
|
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
|
|
|
|
test_loss /= len(test_sampler)
|
|
test_accuracy /= len(test_sampler)
|
|
|
|
test_loss = metric_average(test_loss, 'avg_loss')
|
|
test_accuracy = metric_average(test_accuracy, 'avg_accuracy')
|
|
|
|
if hvd.rank() == 0:
|
|
print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
|
|
test_loss, 100. * test_accuracy))
|
|
|
|
|
|
for epoch in range(1, args.epochs + 1):
|
|
train(epoch)
|
|
test()
|