mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
121 lines
3.8 KiB
Python
121 lines
3.8 KiB
Python
import keras
|
|
from keras.models import Sequential
|
|
from keras.layers import Dense, Dropout, Flatten
|
|
from keras.layers import Conv2D, MaxPooling2D
|
|
from keras.layers.normalization import BatchNormalization
|
|
from keras.utils import to_categorical
|
|
from keras.callbacks import Callback
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import os
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.model_selection import train_test_split
|
|
from azureml.core import Run
|
|
|
|
# dataset object from the run
|
|
run = Run.get_context()
|
|
dataset = run.input_datasets['prepared_fashion_ds']
|
|
|
|
# split dataset into train and test set
|
|
(train_dataset, test_dataset) = dataset.random_split(percentage=0.8, seed=111)
|
|
|
|
# load dataset into pandas dataframe
|
|
data_train = train_dataset.to_pandas_dataframe()
|
|
data_test = test_dataset.to_pandas_dataframe()
|
|
|
|
img_rows, img_cols = 28, 28
|
|
input_shape = (img_rows, img_cols, 1)
|
|
|
|
X = np.array(data_train.iloc[:, 1:])
|
|
y = to_categorical(np.array(data_train.iloc[:, 0]))
|
|
|
|
# here we split validation data to optimiza classifier during training
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=13)
|
|
|
|
# test data
|
|
X_test = np.array(data_test.iloc[:, 1:])
|
|
y_test = to_categorical(np.array(data_test.iloc[:, 0]))
|
|
|
|
|
|
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1).astype('float32') / 255
|
|
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1).astype('float32') / 255
|
|
X_val = X_val.reshape(X_val.shape[0], img_rows, img_cols, 1).astype('float32') / 255
|
|
|
|
batch_size = 256
|
|
num_classes = 10
|
|
epochs = 10
|
|
|
|
# construct neuron network
|
|
model = Sequential()
|
|
model.add(Conv2D(32, kernel_size=(3, 3),
|
|
activation='relu',
|
|
kernel_initializer='he_normal',
|
|
input_shape=input_shape))
|
|
model.add(MaxPooling2D((2, 2)))
|
|
model.add(Dropout(0.25))
|
|
model.add(Conv2D(64, (3, 3), activation='relu'))
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
model.add(Dropout(0.25))
|
|
model.add(Conv2D(128, (3, 3), activation='relu'))
|
|
model.add(Dropout(0.4))
|
|
model.add(Flatten())
|
|
model.add(Dense(128, activation='relu'))
|
|
model.add(Dropout(0.3))
|
|
model.add(Dense(num_classes, activation='softmax'))
|
|
|
|
model.compile(loss=keras.losses.categorical_crossentropy,
|
|
optimizer=keras.optimizers.Adam(),
|
|
metrics=['accuracy'])
|
|
|
|
# start an Azure ML run
|
|
run = Run.get_context()
|
|
|
|
|
|
class LogRunMetrics(Callback):
|
|
# callback at the end of every epoch
|
|
def on_epoch_end(self, epoch, log):
|
|
# log a value repeated which creates a list
|
|
run.log('Loss', log['loss'])
|
|
run.log('Accuracy', log['accuracy'])
|
|
|
|
|
|
history = model.fit(X_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=epochs,
|
|
verbose=1,
|
|
validation_data=(X_val, y_val),
|
|
callbacks=[LogRunMetrics()])
|
|
|
|
score = model.evaluate(X_test, y_test, verbose=0)
|
|
|
|
# log a single value
|
|
run.log("Final test loss", score[0])
|
|
print('Test loss:', score[0])
|
|
|
|
run.log('Final test accuracy', score[1])
|
|
print('Test accuracy:', score[1])
|
|
|
|
plt.figure(figsize=(6, 3))
|
|
plt.title('Fashion MNIST with Keras ({} epochs)'.format(epochs), fontsize=14)
|
|
plt.plot(history.history['accuracy'], 'b-', label='Accuracy', lw=4, alpha=0.5)
|
|
plt.plot(history.history['loss'], 'r--', label='Loss', lw=4, alpha=0.5)
|
|
plt.legend(fontsize=12)
|
|
plt.grid(True)
|
|
|
|
# log an image
|
|
run.log_image('Loss v.s. Accuracy', plot=plt)
|
|
|
|
# create a ./outputs/model folder in the compute target
|
|
# files saved in the "./outputs" folder are automatically uploaded into run history
|
|
os.makedirs('./outputs/model', exist_ok=True)
|
|
|
|
# serialize NN architecture to JSON
|
|
model_json = model.to_json()
|
|
# save model JSON
|
|
with open('./outputs/model/model.json', 'w') as f:
|
|
f.write(model_json)
|
|
# save model weights
|
|
model.save_weights('./outputs/model/model.h5')
|
|
print("model saved in ./outputs/model folder")
|