Files

51 lines
1.9 KiB
Python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import glob
import gzip
import numpy as np
import os
import struct
from azureml.core import Dataset
from azureml.opendatasets import MNIST
from chainer.datasets import tuple_dataset
# load compressed MNIST gz files and return numpy arrays
def load_data(filename, label=False):
with gzip.open(filename) as gz:
struct.unpack('I', gz.read(4))
n_items = struct.unpack('>I', gz.read(4))
if not label:
n_rows = struct.unpack('>I', gz.read(4))[0]
n_cols = struct.unpack('>I', gz.read(4))[0]
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
res = res.reshape(n_items[0], n_rows * n_cols)
else:
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
res = res.reshape(n_items[0], 1)
return res
def download_mnist():
data_folder = os.path.join(os.getcwd(), 'data/mnist')
os.makedirs(data_folder, exist_ok=True)
mnist_file_dataset = MNIST.get_file_dataset()
mnist_file_dataset.download(data_folder, overwrite=True)
X_train = load_data(glob.glob(os.path.join(data_folder, "**/train-images-idx3-ubyte.gz"),
recursive=True)[0], False) / 255.0
X_test = load_data(glob.glob(os.path.join(data_folder, "**/t10k-images-idx3-ubyte.gz"),
recursive=True)[0], False) / 255.0
y_train = load_data(glob.glob(os.path.join(data_folder, "**/train-labels-idx1-ubyte.gz"),
recursive=True)[0], True).reshape(-1)
y_test = load_data(glob.glob(os.path.join(data_folder, "**/t10k-labels-idx1-ubyte.gz"),
recursive=True)[0], True).reshape(-1)
train = tuple_dataset.TupleDataset(X_train.astype(np.float32), y_train.astype(np.int32))
test = tuple_dataset.TupleDataset(X_test.astype(np.float32), y_test.astype(np.int32))
return train, test