Files
MachineLearningNotebooks/tutorials/get-started-day1/IDE-users/src/train.py
2020-09-29 21:09:55 +01:00

53 lines
1.3 KiB
Python

import torch
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from model import Net
# download CIFAR 10 data
trainset = torchvision.datasets.CIFAR10(
root="./data",
train=True,
download=True,
transform=torchvision.transforms.ToTensor(),
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=4, shuffle=True, num_workers=2
)
if __name__ == "__main__":
# define convolutional network
net = Net()
# set up pytorch loss / optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# train the network
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# unpack the data
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999:
loss = running_loss / 2000
print(f"epoch={epoch + 1}, batch={i + 1:5}: loss {loss:.2f}")
running_loss = 0.0
print("Finished Training")