Files
MachineLearningNotebooks/how-to-use-azureml/work-with-data/dataprep/how-to-guides/label-encoder.ipynb
2019-06-26 14:39:09 -04:00

169 lines
4.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/work-with-data/dataprep/how-to-guides/label-encoder.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Label Encoder\n",
"Copyright (c) Microsoft Corporation. All rights reserved.<br>\n",
"Licensed under the MIT License.<br>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Data Prep has the ability to encode labels with values between 0 and (number of classes - 1) using `label_encode`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.dataprep as dprep\n",
"from datetime import datetime\n",
"dflow = dprep.read_csv(path='../data/crime-spring.csv')\n",
"dflow.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use `label_encode` from a Dataflow, simply specify the source column and the new column name. `label_encode` will figure out all the distinct values or classes in the source column, and it will return a new Dataflow with a new column containing the labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dflow = dflow.label_encode(source_column='Primary Type', new_column_name='Primary Type Label')\n",
"dflow.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To have more control over the encoded labels, create a builder with `dataflow.builders.label_encode`.\n",
"The builder allows you to preview and modify the encoded labels before generating a new Dataflow with the results. \n",
"To get started, create a builder object with `dataflow.builders.label_encode` specifying the source column and the new column name. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"builder = dflow.builders.label_encode(source_column='Location Description', new_column_name='Location Description Label')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To generate the encoded labels, call the `learn` method on the builder object:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"builder.learn()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To check the result, access the generated labels through the property `encoded_labels`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"builder.encoded_labels"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To modify the generated results, just assign a new value to `encoded_labels`. The following example adds a missing label not found in the sample data. `builder.encoded_labels` is saved into a variable `encoded_labels`, modified, and assigned back to `builder.encoded_labels`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoded_labels = builder.encoded_labels\n",
"encoded_labels['TOWNHOUSE'] = 6\n",
"\n",
"builder.encoded_labels = encoded_labels\n",
"builder.encoded_labels"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the desired results are achieved, call `builder.to_dataflow` to get the new Dataflow with the encoded labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataflow = builder.to_dataflow()\n",
"dataflow.head(5)"
]
}
],
"metadata": {
"authors": [
{
"name": "sihhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}