mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-19 17:17:04 -05:00
549 lines
18 KiB
Plaintext
549 lines
18 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
|
"\n",
|
|
"Licensed under the MIT License."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Automated Machine Learning\n",
|
|
"_**Remote Execution using AmlCompute**_\n",
|
|
"\n",
|
|
"## Contents\n",
|
|
"1. [Introduction](#Introduction)\n",
|
|
"1. [Setup](#Setup)\n",
|
|
"1. [Data](#Data)\n",
|
|
"1. [Train](#Train)\n",
|
|
"1. [Results](#Results)\n",
|
|
"1. [Test](#Test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Introduction\n",
|
|
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
|
|
"\n",
|
|
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
|
"\n",
|
|
"In this notebook you would see\n",
|
|
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
|
"2. Create or Attach existing AmlCompute to a workspace.\n",
|
|
"3. Configure AutoML using `AutoMLConfig`.\n",
|
|
"4. Train the model using AmlCompute\n",
|
|
"5. Explore the results.\n",
|
|
"6. Test the best fitted model.\n",
|
|
"\n",
|
|
"In addition this notebook showcases the following features\n",
|
|
"- **Parallel** executions for iterations\n",
|
|
"- **Asynchronous** tracking of progress\n",
|
|
"- **Cancellation** of individual iterations or the entire run\n",
|
|
"- Retrieving models for any iteration or logged metric\n",
|
|
"- Specifying AutoML settings as `**kwargs`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup\n",
|
|
"\n",
|
|
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import logging\n",
|
|
"import os\n",
|
|
"import random\n",
|
|
"\n",
|
|
"from matplotlib import pyplot as plt\n",
|
|
"from matplotlib.pyplot import imshow\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"from sklearn import datasets\n",
|
|
"\n",
|
|
"import azureml.core\n",
|
|
"from azureml.core.experiment import Experiment\n",
|
|
"from azureml.core.workspace import Workspace\n",
|
|
"from azureml.train.automl import AutoMLConfig\n",
|
|
"from azureml.train.automl.run import AutoMLRun"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"ws = Workspace.from_config()\n",
|
|
"\n",
|
|
"# Choose a name for the run history container in the workspace.\n",
|
|
"experiment_name = 'automl-remote-amlcompute'\n",
|
|
"project_folder = './sample_projects/automl-remote-amlcompute'\n",
|
|
"\n",
|
|
"experiment = Experiment(ws, experiment_name)\n",
|
|
"\n",
|
|
"output = {}\n",
|
|
"output['SDK version'] = azureml.core.VERSION\n",
|
|
"output['Subscription ID'] = ws.subscription_id\n",
|
|
"output['Workspace Name'] = ws.name\n",
|
|
"output['Resource Group'] = ws.resource_group\n",
|
|
"output['Location'] = ws.location\n",
|
|
"output['Project Directory'] = project_folder\n",
|
|
"output['Experiment Name'] = experiment.name\n",
|
|
"pd.set_option('display.max_colwidth', -1)\n",
|
|
"pd.DataFrame(data = output, index = ['']).T"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from azureml.telemetry import set_diagnostics_collection\n",
|
|
"set_diagnostics_collection(send_diagnostics = True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Create or Attach existing AmlCompute\n",
|
|
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
|
"\n",
|
|
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
|
"\n",
|
|
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from azureml.core.compute import AmlCompute\n",
|
|
"from azureml.core.compute import ComputeTarget\n",
|
|
"\n",
|
|
"# Choose a name for your cluster.\n",
|
|
"amlcompute_cluster_name = \"automlcl\"\n",
|
|
"\n",
|
|
"found = False\n",
|
|
"# Check if this compute target already exists in the workspace.\n",
|
|
"cts = ws.compute_targets\n",
|
|
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
|
" found = True\n",
|
|
" print('Found existing compute target.')\n",
|
|
" compute_target = cts[amlcompute_cluster_name]\n",
|
|
" \n",
|
|
"if not found:\n",
|
|
" print('Creating a new compute target...')\n",
|
|
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
|
" #vm_priority = 'lowpriority', # optional\n",
|
|
" max_nodes = 6)\n",
|
|
"\n",
|
|
" # Create the cluster.\n",
|
|
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
|
" \n",
|
|
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
|
|
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
|
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
|
" \n",
|
|
" # For a more detailed view of current AmlCompute status, use the 'status' property."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from azureml.core.runconfig import RunConfiguration\n",
|
|
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
|
"\n",
|
|
"# create a new RunConfig object\n",
|
|
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
|
"\n",
|
|
"# Set compute target to AmlCompute\n",
|
|
"conda_run_config.target = compute_target\n",
|
|
"conda_run_config.environment.docker.enabled = True\n",
|
|
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
|
|
"\n",
|
|
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
|
|
"conda_run_config.environment.python.conda_dependencies = cd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Data\n",
|
|
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
|
|
"In this example, the `get_data()` function returns data using scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"if not os.path.exists(project_folder):\n",
|
|
" os.makedirs(project_folder)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%%writefile $project_folder/get_data.py\n",
|
|
"\n",
|
|
"from sklearn import datasets\n",
|
|
"from scipy import sparse\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"def get_data():\n",
|
|
" \n",
|
|
" digits = datasets.load_digits()\n",
|
|
" X_train = digits.data\n",
|
|
" y_train = digits.target\n",
|
|
"\n",
|
|
" return { \"X\" : X_train, \"y\" : y_train }"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Train\n",
|
|
"\n",
|
|
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
|
|
"\n",
|
|
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
|
|
"\n",
|
|
"|Property|Description|\n",
|
|
"|-|-|\n",
|
|
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
|
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
|
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
|
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
|
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"automl_settings = {\n",
|
|
" \"iteration_timeout_minutes\": 2,\n",
|
|
" \"iterations\": 20,\n",
|
|
" \"n_cross_validations\": 5,\n",
|
|
" \"primary_metric\": 'AUC_weighted',\n",
|
|
" \"preprocess\": False,\n",
|
|
" \"max_concurrent_iterations\": 5,\n",
|
|
" \"verbosity\": logging.INFO\n",
|
|
"}\n",
|
|
"\n",
|
|
"automl_config = AutoMLConfig(task = 'classification',\n",
|
|
" debug_log = 'automl_errors.log',\n",
|
|
" path = project_folder,\n",
|
|
" run_configuration=conda_run_config,\n",
|
|
" data_script = project_folder + \"/get_data.py\",\n",
|
|
" **automl_settings\n",
|
|
" )\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
|
|
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"remote_run = experiment.submit(automl_config, show_output = False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"remote_run"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Results\n",
|
|
"\n",
|
|
"#### Loading executed runs\n",
|
|
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "raw",
|
|
"metadata": {},
|
|
"source": [
|
|
"remote_run = AutoMLRun(experiment = experiment, run_id = 'AutoML_5db13491-c92a-4f1d-b622-8ab8d973a058')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Widget for Monitoring Runs\n",
|
|
"\n",
|
|
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
|
|
"\n",
|
|
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
|
|
"\n",
|
|
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"remote_run"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from azureml.widgets import RunDetails\n",
|
|
"RunDetails(remote_run).show() "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Wait until the run finishes.\n",
|
|
"remote_run.wait_for_completion(show_output = True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n",
|
|
"#### Retrieve All Child Runs\n",
|
|
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"children = list(remote_run.get_children())\n",
|
|
"metricslist = {}\n",
|
|
"for run in children:\n",
|
|
" properties = run.get_properties()\n",
|
|
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
|
|
" metricslist[int(properties['iteration'])] = metrics\n",
|
|
"\n",
|
|
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
|
"rundata"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Cancelling Runs\n",
|
|
"\n",
|
|
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
|
|
"# remote_run.cancel()\n",
|
|
"\n",
|
|
"# Cancel iteration 1 and move onto iteration 2.\n",
|
|
"# remote_run.cancel_iteration(1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Retrieve the Best Model\n",
|
|
"\n",
|
|
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"best_run, fitted_model = remote_run.get_output()\n",
|
|
"print(best_run)\n",
|
|
"print(fitted_model)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Best Model Based on Any Other Metric\n",
|
|
"Show the run and the model which has the smallest `log_loss` value:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"lookup_metric = \"log_loss\"\n",
|
|
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
|
|
"print(best_run)\n",
|
|
"print(fitted_model)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Model from a Specific Iteration\n",
|
|
"Show the run and the model from the third iteration:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"iteration = 3\n",
|
|
"third_run, third_model = remote_run.get_output(iteration=iteration)\n",
|
|
"print(third_run)\n",
|
|
"print(third_model)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Test\n",
|
|
"\n",
|
|
"#### Load Test Data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"digits = datasets.load_digits()\n",
|
|
"X_test = digits.data[:10, :]\n",
|
|
"y_test = digits.target[:10]\n",
|
|
"images = digits.images[:10]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Testing Our Best Fitted Model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Randomly select digits and test.\n",
|
|
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
|
|
" print(index)\n",
|
|
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
|
|
" label = y_test[index]\n",
|
|
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
|
|
" fig = plt.figure(1, figsize=(3,3))\n",
|
|
" ax1 = fig.add_axes((0,0,.8,.8))\n",
|
|
" ax1.set_title(title)\n",
|
|
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
|
|
" plt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"authors": [
|
|
{
|
|
"name": "savitam"
|
|
}
|
|
],
|
|
"kernelspec": {
|
|
"display_name": "Python 3.6",
|
|
"language": "python",
|
|
"name": "python36"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|