mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-19 17:17:04 -05:00
41 lines
1.1 KiB
Python
41 lines
1.1 KiB
Python
from azureml.core import ScriptRunConfig
|
|
|
|
|
|
def run_rolling_forecast(
|
|
test_experiment,
|
|
compute_target,
|
|
train_run,
|
|
test_dataset,
|
|
target_column_name,
|
|
inference_folder="./forecast",
|
|
):
|
|
train_run.download_file("outputs/model.pkl", inference_folder + "/model.pkl")
|
|
|
|
inference_env = train_run.get_environment()
|
|
|
|
config = ScriptRunConfig(
|
|
source_directory=inference_folder,
|
|
script="forecasting_script.py",
|
|
arguments=[
|
|
"--target_column_name",
|
|
target_column_name,
|
|
"--test_dataset",
|
|
test_dataset.as_named_input(test_dataset.name),
|
|
],
|
|
compute_target=compute_target,
|
|
environment=inference_env,
|
|
)
|
|
|
|
run = test_experiment.submit(
|
|
config,
|
|
tags={
|
|
"training_run_id": train_run.id,
|
|
"run_algorithm": train_run.properties["run_algorithm"],
|
|
"valid_score": train_run.properties["score"],
|
|
"primary_metric": train_run.properties["primary_metric"],
|
|
},
|
|
)
|
|
|
|
run.log("run_algorithm", run.tags["run_algorithm"])
|
|
return run
|