Files
MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/run_forecast.py

50 lines
1.4 KiB
Python

import os
import shutil
from azureml.core import ScriptRunConfig
def run_remote_inference(
test_experiment,
compute_target,
train_run,
test_dataset,
target_column_name,
inference_folder="./forecast",
):
# Create local directory to copy the model.pkl and forecsting_script.py files into.
# These files will be uploaded to and executed on the compute instance.
os.makedirs(inference_folder, exist_ok=True)
shutil.copy("forecasting_script.py", inference_folder)
train_run.download_file(
"outputs/model.pkl", os.path.join(inference_folder, "model.pkl")
)
inference_env = train_run.get_environment()
config = ScriptRunConfig(
source_directory=inference_folder,
script="forecasting_script.py",
arguments=[
"--target_column_name",
target_column_name,
"--test_dataset",
test_dataset.as_named_input(test_dataset.name),
],
compute_target=compute_target,
environment=inference_env,
)
run = test_experiment.submit(
config,
tags={
"training_run_id": train_run.id,
"run_algorithm": train_run.properties["run_algorithm"],
"valid_score": train_run.properties["score"],
"primary_metric": train_run.properties["primary_metric"],
},
)
run.log("run_algorithm", run.tags["run_algorithm"])
return run