Files
2021-02-23 11:19:02 -08:00

239 lines
6.8 KiB
Python

# Copyright (c) 2017 Facebook, Inc. All rights reserved.
# BSD 3-Clause License
#
# Script adapted from:
# https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
# ==============================================================================
# imports
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
import argparse
# define network architecture
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 3)
self.conv3 = nn.Conv2d(64, 128, 3)
self.fc1 = nn.Linear(128 * 6 * 6, 120)
self.dropout = nn.Dropout(p=0.2)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 128 * 6 * 6)
x = self.dropout(F.relu(self.fc1(x)))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def train(train_loader, model, criterion, optimizer, epoch, device, print_freq, rank):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % print_freq == 0: # print every print_freq mini-batches
print(
"Rank %d: [%d, %5d] loss: %.3f"
% (rank, epoch + 1, i + 1, running_loss / print_freq)
)
running_loss = 0.0
def evaluate(test_loader, model, device):
classes = (
"plane",
"car",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
)
model.eval()
correct = 0
total = 0
class_correct = list(0.0 for i in range(10))
class_total = list(0.0 for i in range(10))
with torch.no_grad():
for data in test_loader:
images, labels = data[0].to(device), data[1].to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
c = (predicted == labels).squeeze()
for i in range(10):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
# print total test set accuracy
print(
"Accuracy of the network on the 10000 test images: %d %%"
% (100 * correct / total)
)
# print test accuracy for each of the classes
for i in range(10):
print(
"Accuracy of %5s : %2d %%"
% (classes[i], 100 * class_correct[i] / class_total[i])
)
def main(args):
# get PyTorch environment variables
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["RANK"])
local_rank = int(os.environ["LOCAL_RANK"])
distributed = world_size > 1
# set device
if distributed:
device = torch.device("cuda", local_rank)
else:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# initialize distributed process group using default env:// method
if distributed:
torch.distributed.init_process_group(backend="nccl")
# define train and test dataset DataLoaders
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
train_set = torchvision.datasets.CIFAR10(
root=args.data_dir, train=True, download=False, transform=transform
)
if distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers,
sampler=train_sampler,
)
test_set = torchvision.datasets.CIFAR10(
root=args.data_dir, train=False, download=False, transform=transform
)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers
)
model = Net().to(device)
# wrap model with DDP
if distributed:
model = nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank
)
# define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
model.parameters(), lr=args.learning_rate, momentum=args.momentum
)
# train the model
for epoch in range(args.epochs):
print("Rank %d: Starting epoch %d" % (rank, epoch))
if distributed:
train_sampler.set_epoch(epoch)
model.train()
train(
train_loader,
model,
criterion,
optimizer,
epoch,
device,
args.print_freq,
rank,
)
print("Rank %d: Finished Training" % (rank))
if not distributed or rank == 0:
os.makedirs(args.output_dir, exist_ok=True)
model_path = os.path.join(args.output_dir, "cifar_net.pt")
torch.save(model.state_dict(), model_path)
# evaluate on full test dataset
evaluate(test_loader, model, device)
if __name__ == "__main__":
# setup argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-dir", type=str, help="directory containing CIFAR-10 dataset"
)
parser.add_argument("--epochs", default=10, type=int, help="number of epochs")
parser.add_argument(
"--batch-size",
default=16,
type=int,
help="mini batch size for each gpu/process",
)
parser.add_argument(
"--workers",
default=2,
type=int,
help="number of data loading workers for each gpu/process",
)
parser.add_argument(
"--learning-rate", default=0.001, type=float, help="learning rate"
)
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
parser.add_argument(
"--output-dir", default="outputs", type=str, help="directory to save model to"
)
parser.add_argument(
"--print-freq",
default=200,
type=int,
help="frequency of printing training statistics",
)
args = parser.parse_args()
main(args)