mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
54 lines
1.5 KiB
Python
54 lines
1.5 KiB
Python
import argparse
|
|
from azureml.core import Dataset, Run
|
|
from sklearn.externals import joblib
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--target_column_name",
|
|
type=str,
|
|
dest="target_column_name",
|
|
help="Target Column Name",
|
|
)
|
|
parser.add_argument(
|
|
"--test_dataset", type=str, dest="test_dataset", help="Test Dataset"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
target_column_name = args.target_column_name
|
|
test_dataset_id = args.test_dataset
|
|
|
|
run = Run.get_context()
|
|
ws = run.experiment.workspace
|
|
|
|
# get the input dataset by id
|
|
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
|
|
|
|
X_test_df = (
|
|
test_dataset.drop_columns(columns=[target_column_name])
|
|
.to_pandas_dataframe()
|
|
.reset_index(drop=True)
|
|
)
|
|
y_test_df = (
|
|
test_dataset.with_timestamp_columns(None)
|
|
.keep_columns(columns=[target_column_name])
|
|
.to_pandas_dataframe()
|
|
)
|
|
|
|
fitted_model = joblib.load("model.pkl")
|
|
|
|
X_rf = fitted_model.rolling_forecast(X_test_df, y_test_df.values, step=1)
|
|
|
|
# Add predictions, actuals, and horizon relative to rolling origin to the test feature data
|
|
assign_dict = {
|
|
fitted_model.forecast_origin_column_name: "forecast_origin",
|
|
fitted_model.forecast_column_name: "predicted",
|
|
fitted_model.actual_column_name: target_column_name,
|
|
}
|
|
X_rf.rename(columns=assign_dict, inplace=True)
|
|
|
|
file_name = "outputs/predictions.csv"
|
|
export_csv = X_rf.to_csv(file_name, header=True)
|
|
|
|
# Upload the predictions into artifacts
|
|
run.upload_file(name=file_name, path_or_stream=file_name)
|