mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
136 lines
5.8 KiB
Python
136 lines
5.8 KiB
Python
# This is a modified version of https://github.com/pytorch/examples/blob/master/mnist/main.py which is
|
|
# licensed under BSD 3-Clause (https://github.com/pytorch/examples/blob/master/LICENSE)
|
|
|
|
from __future__ import print_function
|
|
import argparse
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from torchvision import datasets, transforms
|
|
import os
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
|
|
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
|
|
self.conv2_drop = nn.Dropout2d()
|
|
self.fc1 = nn.Linear(320, 50)
|
|
self.fc2 = nn.Linear(50, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(F.max_pool2d(self.conv1(x), 2))
|
|
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
|
|
x = x.view(-1, 320)
|
|
x = F.relu(self.fc1(x))
|
|
x = F.dropout(x, training=self.training)
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x, dim=1)
|
|
|
|
|
|
def train(args, model, device, train_loader, optimizer, epoch, output_dir):
|
|
model.train()
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
data, target = data.to(device), target.to(device)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx % args.log_interval == 0:
|
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
|
epoch, batch_idx * len(data), len(train_loader.dataset),
|
|
100. * batch_idx / len(train_loader), loss.item()))
|
|
|
|
|
|
def test(args, model, device, test_loader):
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data, target in test_loader:
|
|
data, target = data.to(device), target.to(device)
|
|
output = model(data)
|
|
test_loss += F.nll_loss(output, target, size_average=False, reduce=True).item() # sum up batch loss
|
|
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
|
|
test_loss /= len(test_loader.dataset)
|
|
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
|
test_loss, correct, len(test_loader.dataset),
|
|
100. * correct / len(test_loader.dataset)))
|
|
|
|
|
|
def main():
|
|
# Training settings
|
|
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
|
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
|
|
help='input batch size for training (default: 64)')
|
|
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
|
|
help='input batch size for testing (default: 1000)')
|
|
parser.add_argument('--epochs', type=int, default=5, metavar='N',
|
|
help='number of epochs to train (default: 5)')
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
help='learning rate (default: 0.01)')
|
|
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
|
|
help='SGD momentum (default: 0.5)')
|
|
parser.add_argument('--no-cuda', action='store_true', default=False,
|
|
help='disables CUDA training')
|
|
parser.add_argument('--seed', type=int, default=1, metavar='S',
|
|
help='random seed (default: 1)')
|
|
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
|
|
help='how many batches to wait before logging training status')
|
|
parser.add_argument('--output-dir', type=str, default='outputs')
|
|
args = parser.parse_args()
|
|
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
device = torch.device("cuda" if use_cuda else "cpu")
|
|
|
|
output_dir = args.output_dir
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
|
# Use Azure Open Datasets for MNIST dataset
|
|
datasets.MNIST.resources = [
|
|
("https://azureopendatastorage.azurefd.net/mnist/train-images-idx3-ubyte.gz",
|
|
"f68b3c2dcbeaaa9fbdd348bbdeb94873"),
|
|
("https://azureopendatastorage.azurefd.net/mnist/train-labels-idx1-ubyte.gz",
|
|
"d53e105ee54ea40749a09fcbcd1e9432"),
|
|
("https://azureopendatastorage.azurefd.net/mnist/t10k-images-idx3-ubyte.gz",
|
|
"9fb629c4189551a2d022fa330f9573f3"),
|
|
("https://azureopendatastorage.azurefd.net/mnist/t10k-labels-idx1-ubyte.gz",
|
|
"ec29112dd5afa0611ce80d1b7f02629c")
|
|
]
|
|
train_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST('data', train=True, download=True,
|
|
transform=transforms.Compose([transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))])
|
|
),
|
|
batch_size=args.batch_size, shuffle=True, **kwargs)
|
|
test_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST('data', train=False,
|
|
transform=transforms.Compose([transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))])
|
|
),
|
|
batch_size=args.test_batch_size, shuffle=True, **kwargs)
|
|
|
|
model = Net().to(device)
|
|
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
|
|
|
|
for epoch in range(1, args.epochs + 1):
|
|
train(args, model, device, train_loader, optimizer, epoch, output_dir)
|
|
test(args, model, device, test_loader)
|
|
|
|
# save model
|
|
dummy_input = torch.randn(1, 1, 28, 28, device=device)
|
|
model_path = os.path.join(output_dir, 'mnist.onnx')
|
|
torch.onnx.export(model, dummy_input, model_path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|