Files
MachineLearningNotebooks/how-to-use-azureml/reinforcement-learning/cartpole-on-compute-instance/files/cartpole_training.py

33 lines
869 B
Python

import ray
from ray.rllib import train
from ray import tune
import os
from utils import callbacks
if __name__ == "__main__":
# Parse arguments and add callbacks to config
train_parser = train.create_parser()
args = train_parser.parse_args()
args.config["callbacks"] = {"on_train_result": callbacks.on_train_result}
# Trace if video capturing is on
if 'monitor' in args.config and args.config['monitor']:
print("Video capturing is ON!")
# Start ray head (single node)
os.system('ray start --head')
ray.init(address='auto')
# Run training task using tune.run
tune.run(
run_or_experiment=args.run,
config=dict(args.config, env=args.env),
stop=args.stop,
checkpoint_freq=args.checkpoint_freq,
checkpoint_at_end=args.checkpoint_at_end,
local_dir=args.local_dir
)