mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
231 lines
7.2 KiB
Plaintext
231 lines
7.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Custom Python Transforms\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"There will be scenarios when the easiest thing for you to do is just to write some Python code. This SDK provides three extension points that you can use.\n",
|
|
"\n",
|
|
"1. New Script Column\n",
|
|
"2. New Script Filter\n",
|
|
"3. Transform Partition\n",
|
|
"\n",
|
|
"Each of these are supported in both the scale-up and the scale-out runtime. A key advantage of using these extension points is that you don't need to pull all of the data in order to create a dataframe. Your custom python code will be run just like other transforms, at scale, by partition, and typically in parallel."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Initial data prep"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We start by loading crime data."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import azureml.dataprep as dprep\n",
|
|
"col = dprep.col\n",
|
|
"\n",
|
|
"dflow = dprep.read_csv(path='../data/crime-spring.csv')\n",
|
|
"dflow.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We trim the dataset down and keep only the columns we are interested in. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"dflow = dflow.keep_columns(['Case Number','Primary Type', 'Description', 'Latitude', 'Longitude'])\n",
|
|
"dflow = dflow.replace_na(columns=['Latitude', 'Longitude'], custom_na_list='')\n",
|
|
"dflow.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We look for null values using a filter. We found some, so now we'll look at a way to fill these missing values."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"dflow.filter(col('Latitude').is_null()).head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Transform Partition"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We want to replace all null values with a 0, so we decide to use a handy pandas function. This code will be run by partition, not on all of the dataset at a time. This means that on a large dataset, this code may run in parallel as the runtime processes the data partition by partition."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pt_dflow = dflow\n",
|
|
"dflow = pt_dflow.transform_partition(\"\"\"\n",
|
|
"def transform(df, index):\n",
|
|
" df['Latitude'].fillna('0',inplace=True)\n",
|
|
" df['Longitude'].fillna('0',inplace=True)\n",
|
|
" return df\n",
|
|
"\"\"\")\n",
|
|
"dflow.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Transform Partition With File"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Being able to use any python code to manipulate your data as a pandas DataFrame is extremely useful for complex and specific data operations that DataPrep doesn't handle natively. Though the code isn't very testable unfortunately, it's just sitting inside a string.\n",
|
|
"So to improve code testability and ease of script writing there is another transform_partiton interface that takes the path to a python script which must contain a function matching the 'transform' signature defined above.\n",
|
|
"\n",
|
|
"The `script_path` argument should be a relative path to ensure Dataflow portability. Here `map_func.py` contains the same code as in the previous example."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"dflow = pt_dflow.transform_partition_with_file('../data/map_func.py')\n",
|
|
"dflow.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## New Script Column"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We want to create a new column that has both the latitude and longitude. We can achieve it easily using [Data Prep expression](./add-column-using-expression.ipynb), which is faster in execution. Alternatively, We can do this using Python code by using the `new_script_column()` method on the dataflow. Note that we use custom Python code here for demo purpose only. In practise, you should always use Data Prep native functions as a preferred method, and use custom Python code when the functionality is not available in Data Prep. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"dflow = dflow.new_script_column(new_column_name='coordinates', insert_after='Longitude', script=\"\"\"\n",
|
|
"def newvalue(row):\n",
|
|
" return '(' + row['Latitude'] + ', ' + row['Longitude'] + ')'\n",
|
|
"\"\"\")\n",
|
|
"dflow.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## New Script Filter"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we want to filter the dataset down to only the crimes that incurred over $300 in loss. We can build a Python expression that returns True if we want to keep the row, and False to drop the row."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"dflow = dflow.new_script_filter(\"\"\"\n",
|
|
"def includerow(row):\n",
|
|
" val = row['Description']\n",
|
|
" return 'OVER $ 300' in val\n",
|
|
"\"\"\")\n",
|
|
"dflow.head(5)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"authors": [
|
|
{
|
|
"name": "sihhu"
|
|
}
|
|
],
|
|
"kernelspec": {
|
|
"display_name": "Python 3.6",
|
|
"language": "python",
|
|
"name": "python36"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.4"
|
|
},
|
|
"notice": "Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License."
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |