mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-19 17:17:04 -05:00
141 lines
4.2 KiB
Plaintext
141 lines
4.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Train a model and use it for prediction\r\n",
|
|
"\r\n",
|
|
"Before running this notebook, run the auto-ml-sql-setup.ipynb notebook."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set the default database"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"USE [automl]\r\n",
|
|
"GO"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Use the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
|
|
"EXEC dbo.AutoMLTrain @input_query='\r\n",
|
|
"SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,\r\n",
|
|
" demand,\r\n",
|
|
"\t precip,\r\n",
|
|
"\t temp,\r\n",
|
|
"\t CASE WHEN timeStamp < ''2017-01-01'' THEN 0 ELSE 1 END AS is_validate_column\r\n",
|
|
"FROM nyc_energy\r\n",
|
|
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
|
|
"and timeStamp < ''2017-02-01''',\r\n",
|
|
"@label_column='demand',\r\n",
|
|
"@task='forecasting',\r\n",
|
|
"@iterations=10,\r\n",
|
|
"@iteration_timeout_minutes=5,\r\n",
|
|
"@time_column_name='timeStamp',\r\n",
|
|
"@is_validate_column='is_validate_column',\r\n",
|
|
"@experiment_name='automl-sql-forecast',\r\n",
|
|
"@primary_metric='normalized_root_mean_squared_error'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Use the AutoMLPredict stored procedure to predict using the forecasting model for the nyc_energy dataset."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model\r\n",
|
|
" WHERE ExperimentName = 'automl-sql-forecast'\r\n",
|
|
"\t\t\t\t\t\t\t\tORDER BY CreatedDate DESC)\r\n",
|
|
"\r\n",
|
|
"EXEC dbo.AutoMLPredict @input_query='\r\n",
|
|
"SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,\r\n",
|
|
" demand,\r\n",
|
|
"\t precip,\r\n",
|
|
"\t temp\r\n",
|
|
"FROM nyc_energy\r\n",
|
|
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
|
|
"AND timeStamp >= ''2017-02-01''',\r\n",
|
|
"@label_column='demand',\r\n",
|
|
"@model=@model\r\n",
|
|
"WITH RESULT SETS ((timeStamp NVARCHAR(30), actual_demand FLOAT, precip FLOAT, temp FLOAT, predicted_demand FLOAT))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## List all the metrics for all iterations for the most recent training run."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"DECLARE @RunId NVARCHAR(43)\r\n",
|
|
"DECLARE @ExperimentName NVARCHAR(255)\r\n",
|
|
"\r\n",
|
|
"SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)\r\n",
|
|
"FROM aml_model\r\n",
|
|
"ORDER BY CreatedDate DESC\r\n",
|
|
"\r\n",
|
|
"EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"authors": [
|
|
{
|
|
"name": "jeffshep"
|
|
}
|
|
],
|
|
"kernelspec": {
|
|
"display_name": "Python 3.6",
|
|
"language": "sql",
|
|
"name": "python36"
|
|
},
|
|
"language_info": {
|
|
"name": "sql",
|
|
"version": ""
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |