mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
# 06-run-pytorch-data.py
|
|
from azureml.core import Workspace
|
|
from azureml.core import Experiment
|
|
from azureml.core import Environment
|
|
from azureml.core import ScriptRunConfig
|
|
from azureml.core import Dataset
|
|
|
|
if __name__ == "__main__":
|
|
ws = Workspace.from_config()
|
|
datastore = ws.get_default_datastore()
|
|
dataset = Dataset.File.from_files(path=(datastore, 'datasets/cifar10'))
|
|
|
|
experiment = Experiment(workspace=ws, name='day1-experiment-data')
|
|
|
|
config = ScriptRunConfig(
|
|
source_directory='./src',
|
|
script='train.py',
|
|
compute_target='cpu-cluster',
|
|
arguments=[
|
|
'--data_path', dataset.as_named_input('input').as_mount(),
|
|
'--learning_rate', 0.003,
|
|
'--momentum', 0.92],
|
|
)
|
|
# set up pytorch environment
|
|
env = Environment.from_conda_specification(
|
|
name='pytorch-env',
|
|
file_path='./environments/pytorch-env.yml'
|
|
)
|
|
config.run_config.environment = env
|
|
|
|
run = experiment.submit(config)
|
|
aml_url = run.get_portal_url()
|
|
print("Submitted to compute cluster. Click link below")
|
|
print("")
|
|
print(aml_url)
|