Files
MachineLearningNotebooks/how-to-use-azureml/explain-model/azure-integration/scoring-time/score.py

34 lines
1.1 KiB
Python

import json
import numpy as np
import pandas as pd
import os
import pickle
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from azureml.core.model import Model
def init():
global original_model
global scoring_explainer
# Retrieve the path to the model file using the model name
# Assume original model is named original_prediction_model
original_model_path = Model.get_model_path('original_model')
scoring_explainer_path = Model.get_model_path('IBM_attrition_explainer')
original_model = joblib.load(original_model_path)
scoring_explainer = joblib.load(scoring_explainer_path)
def run(raw_data):
# Get predictions and explanations for each data point
data = pd.read_json(raw_data)
# Make prediction
predictions = original_model.predict(data)
# Retrieve model explanations
local_importance_values = scoring_explainer.explain(data)
# You can return any data type as long as it is JSON-serializable
return {'predictions': predictions.tolist(), 'local_importance_values': local_importance_values}