Files
MachineLearningNotebooks/tutorials/quickstart/score.py

52 lines
1.3 KiB
Python

import os
import torch
import json
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def init():
global net
global classes
model_filename = 'cifar_net.pth'
model_path = os.path.join(os.environ['AZUREML_MODEL_DIR'], model_filename)
net = Net()
net.load_state_dict(torch.load(model_path))
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def run(data):
data = json.loads(data)
images = torch.FloatTensor(data['data'])
outputs = net(images)
_, predicted = torch.max(outputs, 1)
result = [classes[predicted[j]] for j in range(4)]
result_json = json.dumps({"predictions": result})
# You can return any JSON-serializable object.
return result_json