mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
173 lines
5.9 KiB
Python
173 lines
5.9 KiB
Python
import argparse
|
|
import os
|
|
import sys
|
|
import re
|
|
import json
|
|
import traceback
|
|
from PIL import Image
|
|
|
|
import torch
|
|
from torchvision import transforms
|
|
|
|
from azureml.core.model import Model
|
|
|
|
style_model = None
|
|
|
|
|
|
class TransformerNet(torch.nn.Module):
|
|
def __init__(self):
|
|
super(TransformerNet, self).__init__()
|
|
# Initial convolution layers
|
|
self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
|
|
self.in1 = torch.nn.InstanceNorm2d(32, affine=True)
|
|
self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
|
|
self.in2 = torch.nn.InstanceNorm2d(64, affine=True)
|
|
self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
|
|
self.in3 = torch.nn.InstanceNorm2d(128, affine=True)
|
|
# Residual layers
|
|
self.res1 = ResidualBlock(128)
|
|
self.res2 = ResidualBlock(128)
|
|
self.res3 = ResidualBlock(128)
|
|
self.res4 = ResidualBlock(128)
|
|
self.res5 = ResidualBlock(128)
|
|
# Upsampling Layers
|
|
self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
|
|
self.in4 = torch.nn.InstanceNorm2d(64, affine=True)
|
|
self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
|
|
self.in5 = torch.nn.InstanceNorm2d(32, affine=True)
|
|
self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
|
|
# Non-linearities
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, X):
|
|
y = self.relu(self.in1(self.conv1(X)))
|
|
y = self.relu(self.in2(self.conv2(y)))
|
|
y = self.relu(self.in3(self.conv3(y)))
|
|
y = self.res1(y)
|
|
y = self.res2(y)
|
|
y = self.res3(y)
|
|
y = self.res4(y)
|
|
y = self.res5(y)
|
|
y = self.relu(self.in4(self.deconv1(y)))
|
|
y = self.relu(self.in5(self.deconv2(y)))
|
|
y = self.deconv3(y)
|
|
return y
|
|
|
|
|
|
class ConvLayer(torch.nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
|
super(ConvLayer, self).__init__()
|
|
reflection_padding = kernel_size // 2
|
|
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
|
|
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
|
|
|
def forward(self, x):
|
|
out = self.reflection_pad(x)
|
|
out = self.conv2d(out)
|
|
return out
|
|
|
|
|
|
class ResidualBlock(torch.nn.Module):
|
|
"""ResidualBlock
|
|
introduced in: https://arxiv.org/abs/1512.03385
|
|
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
|
|
"""
|
|
|
|
def __init__(self, channels):
|
|
super(ResidualBlock, self).__init__()
|
|
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
|
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
|
|
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
|
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.relu(self.in1(self.conv1(x)))
|
|
out = self.in2(self.conv2(out))
|
|
out = out + residual
|
|
return out
|
|
|
|
|
|
class UpsampleConvLayer(torch.nn.Module):
|
|
"""UpsampleConvLayer
|
|
Upsamples the input and then does a convolution. This method gives better results
|
|
compared to ConvTranspose2d.
|
|
ref: http://distill.pub/2016/deconv-checkerboard/
|
|
"""
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
|
|
super(UpsampleConvLayer, self).__init__()
|
|
self.upsample = upsample
|
|
if upsample:
|
|
self.upsample_layer = torch.nn.Upsample(mode='nearest', scale_factor=upsample)
|
|
reflection_padding = kernel_size // 2
|
|
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
|
|
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
|
|
|
def forward(self, x):
|
|
x_in = x
|
|
if self.upsample:
|
|
x_in = self.upsample_layer(x_in)
|
|
out = self.reflection_pad(x_in)
|
|
out = self.conv2d(out)
|
|
return out
|
|
|
|
|
|
def load_image(filename):
|
|
img = Image.open(filename)
|
|
return img
|
|
|
|
|
|
def save_image(filename, data):
|
|
img = data.clone().clamp(0, 255).numpy()
|
|
img = img.transpose(1, 2, 0).astype("uint8")
|
|
img = Image.fromarray(img)
|
|
img.save(filename)
|
|
|
|
|
|
def init():
|
|
global output_path, args
|
|
global style_model, device
|
|
output_path = os.environ['AZUREML_BI_OUTPUT_PATH']
|
|
print(f'output path: {output_path}')
|
|
print(f'Cuda available? {torch.cuda.is_available()}')
|
|
|
|
arg_parser = argparse.ArgumentParser(description="parser for fast-neural-style")
|
|
arg_parser.add_argument("--style", type=str, help="style name")
|
|
args, unknown_args = arg_parser.parse_known_args()
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
with torch.no_grad():
|
|
style_model = TransformerNet()
|
|
model_path = Model.get_model_path(args.style)
|
|
state_dict = torch.load(os.path.join(model_path))
|
|
# remove saved deprecated running_* keys in InstanceNorm from the checkpoint
|
|
for k in list(state_dict.keys()):
|
|
if re.search(r'in\d+\.running_(mean|var)$', k):
|
|
del state_dict[k]
|
|
style_model.load_state_dict(state_dict)
|
|
style_model.to(device)
|
|
print(f'Model loaded successfully. Path: {model_path}')
|
|
|
|
|
|
def run(mini_batch):
|
|
|
|
result = []
|
|
for image_file_path in mini_batch:
|
|
img = load_image(image_file_path)
|
|
|
|
with torch.no_grad():
|
|
content_transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Lambda(lambda x: x.mul(255))
|
|
])
|
|
content_image = content_transform(img)
|
|
content_image = content_image.unsqueeze(0).to(device)
|
|
|
|
output = style_model(content_image).cpu()
|
|
output_file_path = os.path.join(output_path, os.path.basename(image_file_path))
|
|
save_image(output_file_path, output[0])
|
|
result.append(output_file_path)
|
|
|
|
return result
|