Files

122 lines
3.9 KiB
Python

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import Callback
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from azureml.core import Run
# dataset object from the run
run = Run.get_context()
dataset = run.input_datasets['prepared_fashion_ds']
# split dataset into train and test set
(train_dataset, test_dataset) = dataset.random_split(percentage=0.8, seed=111)
# load dataset into pandas dataframe
data_train = train_dataset.to_pandas_dataframe()
data_test = test_dataset.to_pandas_dataframe()
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)
X = np.array(data_train.iloc[:, 1:])
y = to_categorical(np.array(data_train.iloc[:, 0]))
# here we split validation data to optimiza classifier during training
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=13)
# test data
X_test = np.array(data_test.iloc[:, 1:])
y_test = to_categorical(np.array(data_test.iloc[:, 0]))
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1).astype('float32') / 255
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1).astype('float32') / 255
X_val = X_val.reshape(X_val.shape[0], img_rows, img_cols, 1).astype('float32') / 255
batch_size = 256
num_classes = 10
epochs = 10
# construct neuron network
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
kernel_initializer='he_normal',
input_shape=input_shape))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=categorical_crossentropy,
optimizer=Adam(),
metrics=['accuracy'])
# start an Azure ML run
run = Run.get_context()
class LogRunMetrics(Callback):
# callback at the end of every epoch
def on_epoch_end(self, epoch, log):
# log a value repeated which creates a list
run.log('Loss', log['loss'])
run.log('Accuracy', log['accuracy'])
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_val, y_val),
callbacks=[LogRunMetrics()])
score = model.evaluate(X_test, y_test, verbose=0)
# log a single value
run.log("Final test loss", score[0])
print('Test loss:', score[0])
run.log('Final test accuracy', score[1])
print('Test accuracy:', score[1])
plt.figure(figsize=(6, 3))
plt.title('Fashion MNIST with Keras ({} epochs)'.format(epochs), fontsize=14)
plt.plot(history.history['accuracy'], 'b-', label='Accuracy', lw=4, alpha=0.5)
plt.plot(history.history['loss'], 'r--', label='Loss', lw=4, alpha=0.5)
plt.legend(fontsize=12)
plt.grid(True)
# log an image
run.log_image('Loss v.s. Accuracy', plot=plt)
# create a ./outputs/model folder in the compute target
# files saved in the "./outputs" folder are automatically uploaded into run history
os.makedirs('./outputs/model', exist_ok=True)
# serialize NN architecture to JSON
model_json = model.to_json()
# save model JSON
with open('./outputs/model/model.json', 'w') as f:
f.write(model_json)
# save model weights
model.save_weights('./outputs/model/model.h5')
print("model saved in ./outputs/model folder")