Files
MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/parallel-run/Code/iris_score.py

32 lines
812 B
Python

import io
import pickle
import argparse
import numpy as np
from azureml.core.model import Model
from sklearn.linear_model import LogisticRegression
def init():
global iris_model
parser = argparse.ArgumentParser(description="Iris model serving")
parser.add_argument('--model_name', dest="model_name", required=True)
args, unknown_args = parser.parse_known_args()
model_path = Model.get_model_path(args.model_name)
with open(model_path, 'rb') as model_file:
iris_model = pickle.load(model_file)
def run(input_data):
# make inference
num_rows, num_cols = input_data.shape
pred = iris_model.predict(input_data).reshape((num_rows, 1))
# cleanup output
result = input_data.drop(input_data.columns[4:], axis=1)
result['variety'] = pred
return result