Files
MachineLearningNotebooks/ignore/doc-qa/how-to-deploy-to-aci/how-to-deploy-to-aci.py
Sheri Gilley 23189c6f40 move folder
2018-10-17 16:24:46 -05:00

175 lines
5.9 KiB
Python

#!/usr/bin/env python
# coding: utf-8
import azureml.core
print('SDK version' + azureml.core.VERSION)
# PREREQ: load workspace info
# import azureml.core
# <loadWorkspace>
from azureml.core import Workspace
ws = Workspace.from_config()
# </loadWorkspace>
scorepy_content = "import json\nimport numpy as np\nimport os\nimport pickle\nfrom sklearn.externals import joblib\nfrom sklearn.linear_model import LogisticRegression\n\nfrom azureml.core.model import Model\n\ndef init():\n global model\n # retreive the path to the model file using the model name\n model_path = Model.get_model_path('sklearn_mnist')\n model = joblib.load(model_path)\n\ndef run(raw_data):\n data = np.array(json.loads(raw_data)['data'])\n # make prediction\n y_hat = model.predict(data)\n return json.dumps(y_hat.tolist())"
print(scorepy_content)
with open("score.py","w") as f:
f.write(scorepy_content)
# PREREQ: create environment file
from azureml.core.conda_dependencies import CondaDependencies
myenv = CondaDependencies()
myenv.add_conda_package("scikit-learn")
with open("myenv.yml","w") as f:
f.write(myenv.serialize_to_string())
#<configImage>
from azureml.core.image import ContainerImage
image_config = ContainerImage.image_configuration(execution_script = "score.py",
runtime = "python",
conda_file = "myenv.yml",
description = "Image with mnist model",
tags = {"data": "mnist", "type": "classification"}
)
#</configImage>
# <configAci>
from azureml.core.webservice import AciWebservice
aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1,
memory_gb = 1,
tags = {"data": "mnist", "type": "classification"},
description = 'Handwriting recognition')
# </configAci>
#<registerModel>
from azureml.core.model import Model
model_name = "sklearn_mnist"
model = Model.register(model_path = "sklearn_mnist_model.pkl",
model_name = model_name,
tags = {"data": "mnist", "type": "classification"},
description = "Mnist handwriting recognition",
workspace = ws)
#</registerModel>
# <retrieveModel>
from azureml.core.model import Model
model_name = "sklearn_mnist"
model=Model(ws, model_name)
# </retrieveModel>
# ## DEPLOY FROM REGISTERED MODEL
# <option2Deploy>
from azureml.core.webservice import Webservice
service_name = 'aci-mnist-2'
service = Webservice.deploy_from_model(deployment_config = aciconfig,
image_config = image_config,
models = [model], # this is the registered model object
name = service_name,
workspace = ws)
service.wait_for_deployment(show_output = True)
print(service.state)
# </option2Deploy>
service.delete()
# ## DEPLOY FROM IMAGE
# <option3CreateImage>
from azureml.core.image import ContainerImage
image = ContainerImage.create(name = "myimage1",
models = [model], # this is the registered model object
image_config = image_config,
workspace = ws)
image.wait_for_creation(show_output = True)
# </option3CreateImage>
# <option3Deploy>
from azureml.core.webservice import Webservice
service_name = 'aci-mnist-13'
service = Webservice.deploy_from_image(deployment_config = aciconfig,
image = image,
name = service_name,
workspace = ws)
service.wait_for_deployment(show_output = True)
print(service.state)
# </option3Deploy>
service.delete()
# ## DEPLOY FROM MODEL FILE
# First change score.py!
scorepy_content = "import json\nimport numpy as np\nimport os\nimport pickle\nfrom sklearn.externals import joblib\nfrom sklearn.linear_model import LogisticRegression\n\nfrom azureml.core.model import Model\n\ndef init():\n global model\n # retreive the path to the model file using the model name\n model_path = Model.get_model_path('sklearn_mnist_model.pkl')\n model = joblib.load(model_path)\n\ndef run(raw_data):\n data = np.array(json.loads(raw_data)['data'])\n # make prediction\n y_hat = model.predict(data)\n return json.dumps(y_hat.tolist())"
with open("score.py","w") as f:
f.write(scorepy_content)
# <option1Deploy>
from azureml.core.webservice import Webservice
service_name = 'aci-mnist-1'
service = Webservice.deploy(deployment_config = aciconfig,
image_config = image_config,
model_paths = ['sklearn_mnist_model.pkl'],
name = service_name,
workspace = ws)
service.wait_for_deployment(show_output = True)
print(service.state)
# </option1Deploy>
# <testService>
# Load Data
import os
import urllib
os.makedirs('./data', exist_ok = True)
urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/test-images.gz')
from utils import load_data
X_test = load_data('./data/test-images.gz', False) / 255.0
from sklearn import datasets
import numpy as np
import json
# find 5 random samples from test set
n = 5
sample_indices = np.random.permutation(X_test.shape[0])[0:n]
test_samples = json.dumps({"data": X_test[sample_indices].tolist()})
test_samples = bytes(test_samples, encoding = 'utf8')
# predict using the deployed model
prediction = service.run(input_data = test_samples)
print(prediction)
# </testService>
# <deleteService>
service.delete()
# </deleteService>