Files
MachineLearningNotebooks/ignore/doc-qa/how-to-set-up-training-targets/remote.py
2019-01-07 11:29:40 -06:00

52 lines
1.9 KiB
Python

# Code for Remote virtual machines
compute_target_name = "attach-dsvm"
#<run_dsvm>
import azureml.core
from azureml.core.runconfig import RunConfiguration, DEFAULT_CPU_IMAGE
from azureml.core.conda_dependencies import CondaDependencies
run_dsvm = RunConfiguration(framework = "python")
# Set the compute target to the Linux DSVM
run_dsvm.target = compute_target_name
# Use Docker in the remote VM
run_dsvm.environment.docker.enabled = True
# Use the CPU base image
# To use GPU in DSVM, you must also use the GPU base Docker image "azureml.core.runconfig.DEFAULT_GPU_IMAGE"
run_dsvm.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE
print('Base Docker image is:', run_dsvm.environment.docker.base_image)
# Prepare the Docker and conda environment automatically when they're used for the first time
run_dsvm.prepare_environment = True
# Specify the CondaDependencies object
run_dsvm.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'])
#</run_dsvm>
hdi_compute.name = "blah"
from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies
# use pyspark framework
hdi_run_config = RunConfiguration(framework="pyspark")
# Set compute target to the HDI cluster
hdi_run_config.target = hdi_compute.name
# specify CondaDependencies object to ask system installing numpy
cd = CondaDependencies()
cd.add_conda_package('numpy')
hdi_run_config.environment.python.conda_dependencies = cd
#<run_hdi>
from azureml.core.runconfig import RunConfiguration
# Configure the HDInsight run
# Load the runconfig object from the myhdi.runconfig file generated in the previous attach operation
run_hdi = RunConfiguration.load(project_object = project, run_name = 'myhdi')
# Ask the system to prepare the conda environment automatically when it's used for the first time
run_hdi.auto_prepare_environment = True>