Files
MachineLearningNotebooks/how-to-use-azureml/monitor-models/data-drift/score.py

45 lines
1.8 KiB
Python

import os
import numpy as np
from azureml.monitoring import ModelDataCollector
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
from inference_schema.schema_decorators import input_schema, output_schema
# sklearn.externals.joblib is removed in 0.23
from sklearn import __version__ as sklearnver
from packaging.version import Version
if Version(sklearnver) < Version("0.23.0"):
from sklearn.externals import joblib
else:
import joblib
def init():
global model
global inputs_dc
inputs_dc = ModelDataCollector('elevation-regression-model.pkl', designation='inputs',
feature_names=['latitude', 'longitude', 'temperature', 'windAngle', 'windSpeed'])
# note here "elevation-regression-model.pkl" is the name of the model registered under
# this is a different behavior than before when the code is run locally, even though the code is the same.
# AZUREML_MODEL_DIR is an environment variable created during deployment.
# It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)
# For multiple models, it points to the folder containing all deployed models (./azureml-models)
model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'elevation-regression-model.pkl')
model = joblib.load(model_path)
input_sample = np.array([[30, -85, 21, 150, 6]])
output_sample = np.array([8.995])
@input_schema('data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(data):
try:
inputs_dc.collect(data)
result = model.predict(data)
# you can return any datatype as long as it is JSON-serializable
return result.tolist()
except Exception as e:
error = str(e)
return error