Files

121 lines
3.8 KiB
Python

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.utils import to_categorical
from keras.callbacks import Callback
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from azureml.core import Run
# dataset object from the run
run = Run.get_context()
dataset = run.input_datasets['prepared_fashion_ds']
# split dataset into train and test set
(train_dataset, test_dataset) = dataset.random_split(percentage=0.8, seed=111)
# load dataset into pandas dataframe
data_train = train_dataset.to_pandas_dataframe()
data_test = test_dataset.to_pandas_dataframe()
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)
X = np.array(data_train.iloc[:, 1:])
y = to_categorical(np.array(data_train.iloc[:, 0]))
# here we split validation data to optimiza classifier during training
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=13)
# test data
X_test = np.array(data_test.iloc[:, 1:])
y_test = to_categorical(np.array(data_test.iloc[:, 0]))
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1).astype('float32') / 255
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1).astype('float32') / 255
X_val = X_val.reshape(X_val.shape[0], img_rows, img_cols, 1).astype('float32') / 255
batch_size = 256
num_classes = 10
epochs = 10
# construct neuron network
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
kernel_initializer='he_normal',
input_shape=input_shape))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
# start an Azure ML run
run = Run.get_context()
class LogRunMetrics(Callback):
# callback at the end of every epoch
def on_epoch_end(self, epoch, log):
# log a value repeated which creates a list
run.log('Loss', log['loss'])
run.log('Accuracy', log['accuracy'])
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_val, y_val),
callbacks=[LogRunMetrics()])
score = model.evaluate(X_test, y_test, verbose=0)
# log a single value
run.log("Final test loss", score[0])
print('Test loss:', score[0])
run.log('Final test accuracy', score[1])
print('Test accuracy:', score[1])
plt.figure(figsize=(6, 3))
plt.title('Fashion MNIST with Keras ({} epochs)'.format(epochs), fontsize=14)
plt.plot(history.history['accuracy'], 'b-', label='Accuracy', lw=4, alpha=0.5)
plt.plot(history.history['loss'], 'r--', label='Loss', lw=4, alpha=0.5)
plt.legend(fontsize=12)
plt.grid(True)
# log an image
run.log_image('Loss v.s. Accuracy', plot=plt)
# create a ./outputs/model folder in the compute target
# files saved in the "./outputs" folder are automatically uploaded into run history
os.makedirs('./outputs/model', exist_ok=True)
# serialize NN architecture to JSON
model_json = model.to_json()
# save model JSON
with open('./outputs/model/model.json', 'w') as f:
f.write(model_json)
# save model weights
model.save_weights('./outputs/model/model.h5')
print("model saved in ./outputs/model folder")