Files
MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/run_forecast.py

38 lines
1.7 KiB
Python

from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
def run_rolling_forecast(test_experiment, compute_target, train_run, test_dataset,
target_column_name, inference_folder='./forecast'):
condafile = inference_folder + '/condafile.yml'
train_run.download_file('outputs/model.pkl',
inference_folder + '/model.pkl')
train_run.download_file('outputs/conda_env_v_1_0_0.yml', condafile)
inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path=condafile)
est = Estimator(source_directory=inference_folder,
entry_script='forecasting_script.py',
script_params={
'--target_column_name': target_column_name
},
inputs=[test_dataset.as_named_input('test_data')],
compute_target=compute_target,
environment_definition=inference_env)
run = test_experiment.submit(est,
tags={
'training_run_id': train_run.id,
'run_algorithm': train_run.properties['run_algorithm'],
'valid_score': train_run.properties['score'],
'primary_metric': train_run.properties['primary_metric']
})
run.log("run_algorithm", run.tags['run_algorithm'])
return run