Files
MachineLearningNotebooks/how-to-use-azureml/training
Roope Astala c7bec58593 update version
2019-02-11 15:17:40 -05:00
..
2019-01-28 15:30:17 -05:00
2019-02-11 15:12:30 -05:00
2019-01-28 15:30:17 -05:00
2019-01-28 15:30:17 -05:00
2019-01-28 15:30:17 -05:00
2019-02-11 15:17:40 -05:00
2019-01-28 15:30:17 -05:00

Using basic training APIs

Follow these sample notebooks to learn:

  1. Train within notebook: train a simple scikit-learn model using the Jupyter kernel and deploy the model to Azure Container Service.
  2. Train on local: train a model using local computer as compute target.
  3. Train on remote VM: train a model using a remote Azure VM as compute target.
  4. Train on AmlCompute: train a model using an AmlCompute cluster as compute target.
  5. Train in an HDI Spark cluster: train a Spark ML model using an HDInsight Spark cluster as compute target.
  6. Logging API: experiment with various logging functions to create runs and automatically generate graphs.