Files
2019-02-14 16:55:43 -05:00

122 lines
3.7 KiB
Python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import numpy as np
import argparse
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense
from keras.optimizers import RMSprop
from keras.callbacks import Callback
import tensorflow as tf
from azureml.core import Run
from utils import load_data, one_hot_encode
print("Keras version:", keras.__version__)
print("Tensorflow version:", tf.__version__)
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
parser.add_argument('--batch-size', type=int, dest='batch_size', default=50, help='mini batch size for training')
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=100,
help='# of neurons in the first layer')
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=100,
help='# of neurons in the second layer')
args = parser.parse_args()
data_folder = args.data_folder
print('training dataset is stored here:', data_folder)
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
training_set_size = X_train.shape[0]
n_inputs = 28 * 28
n_h1 = args.n_hidden_1
n_h2 = args.n_hidden_2
n_outputs = 10
n_epochs = 20
batch_size = args.batch_size
y_train = one_hot_encode(y_train, n_outputs)
y_test = one_hot_encode(y_test, n_outputs)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
# Build a simple MLP model
model = Sequential()
# input layer
model.add(Dense(n_h1, activation='relu', input_shape=(n_inputs,)))
# hidden layer
model.add(Dense(n_h2, activation='relu'))
# output layer
model.add(Dense(n_outputs, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
# start an Azure ML run
run = Run.get_context()
class LogRunMetrics(Callback):
# callback at the end of every epoch
def on_epoch_end(self, epoch, log):
# log a value repeated which creates a list
run.log('Loss', log['loss'])
run.log('Accuracy', log['acc'])
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=n_epochs,
verbose=2,
validation_data=(X_test, y_test),
callbacks=[LogRunMetrics()])
score = model.evaluate(X_test, y_test, verbose=0)
# log a single value
run.log("Final test loss", score[0])
print('Test loss:', score[0])
run.log('Final test accuracy', score[1])
print('Test accuracy:', score[1])
plt.figure(figsize=(6, 3))
plt.title('MNIST with Keras MLP ({} epochs)'.format(n_epochs), fontsize=14)
plt.plot(history.history['acc'], 'b-', label='Accuracy', lw=4, alpha=0.5)
plt.plot(history.history['loss'], 'r--', label='Loss', lw=4, alpha=0.5)
plt.legend(fontsize=12)
plt.grid(True)
# log an image
run.log_image('Accuracy vs Loss', plot=plt)
# create a ./outputs/model folder in the compute target
# files saved in the "./outputs" folder are automatically uploaded into run history
os.makedirs('./outputs/model', exist_ok=True)
# serialize NN architecture to JSON
model_json = model.to_json()
# save model JSON
with open('./outputs/model/model.json', 'w') as f:
f.write(model_json)
# save model weights
model.save_weights('./outputs/model/model.h5')
print("model saved in ./outputs/model folder")