mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-19 17:17:04 -05:00
420 lines
16 KiB
Plaintext
420 lines
16 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
|
"\n",
|
|
"Licensed under the MIT License."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Automated Machine Learning\n",
|
|
"_**Classification of credit card fraudulent transactions on local managed compute **_\n",
|
|
"\n",
|
|
"## Contents\n",
|
|
"1. [Introduction](#Introduction)\n",
|
|
"1. [Setup](#Setup)\n",
|
|
"1. [Train](#Train)\n",
|
|
"1. [Results](#Results)\n",
|
|
"1. [Test](#Test)\n",
|
|
"1. [Acknowledgements](#Acknowledgements)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Introduction\n",
|
|
"\n",
|
|
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
|
|
"\n",
|
|
"This notebook is using local managed compute to train the model.\n",
|
|
"\n",
|
|
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
|
"\n",
|
|
"In this notebook you will learn how to:\n",
|
|
"1. Create an experiment using an existing workspace.\n",
|
|
"2. Configure AutoML using `AutoMLConfig`.\n",
|
|
"3. Train the model using local managed compute.\n",
|
|
"4. Explore the results.\n",
|
|
"5. Test the fitted model."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup\n",
|
|
"\n",
|
|
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import logging\n",
|
|
"\n",
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"import azureml.core\n",
|
|
"from azureml.core.compute_target import LocalTarget\n",
|
|
"from azureml.core.experiment import Experiment\n",
|
|
"from azureml.core.workspace import Workspace\n",
|
|
"from azureml.core.dataset import Dataset\n",
|
|
"from azureml.train.automl import AutoMLConfig"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(\"This notebook was created using version 1.54.0 of the Azure ML SDK\")\n",
|
|
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"ws = Workspace.from_config()\n",
|
|
"\n",
|
|
"# choose a name for experiment\n",
|
|
"experiment_name = 'automl-local-managed'\n",
|
|
"\n",
|
|
"experiment=Experiment(ws, experiment_name)\n",
|
|
"\n",
|
|
"output = {}\n",
|
|
"output['Subscription ID'] = ws.subscription_id\n",
|
|
"output['Workspace'] = ws.name\n",
|
|
"output['Resource Group'] = ws.resource_group\n",
|
|
"output['Location'] = ws.location\n",
|
|
"output['Experiment Name'] = experiment.name\n",
|
|
"pd.set_option('display.max_colwidth', None)\n",
|
|
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
|
"outputDf.T"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Determine if local docker is configured for Linux images\n",
|
|
"\n",
|
|
"Local managed runs will leverage a Linux docker container to submit the run to. Due to this, the docker needs to be configured to use Linux containers."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Check if Docker is installed and Linux containers are enabled\n",
|
|
"import subprocess\n",
|
|
"from subprocess import CalledProcessError\n",
|
|
"try:\n",
|
|
" assert subprocess.run(\"docker -v\", shell=True).returncode == 0, 'Local Managed runs require docker to be installed.'\n",
|
|
" out = subprocess.check_output(\"docker system info\", shell=True).decode('ascii')\n",
|
|
" assert \"OSType: linux\" in out, 'Docker engine needs to be configured to use Linux containers.' \\\n",
|
|
" 'https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers'\n",
|
|
"except CalledProcessError as ex:\n",
|
|
" raise Exception('Local Managed runs require docker to be installed.') from ex"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Load Data\n",
|
|
"\n",
|
|
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
|
|
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
|
|
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
|
|
"label_column_name = 'Class'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Train\n",
|
|
"\n",
|
|
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
|
|
"\n",
|
|
"|Property|Description|\n",
|
|
"|-|-|\n",
|
|
"|**task**|classification or regression|\n",
|
|
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
|
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
|
|
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
|
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
|
"|**label_column_name**|The name of the label column.|\n",
|
|
"|**enable_local_managed**|Enable the experimental local-managed scenario.|\n",
|
|
"\n",
|
|
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"automl_settings = {\n",
|
|
" \"n_cross_validations\": 3,\n",
|
|
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
|
" \"enable_early_stopping\": True,\n",
|
|
" \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
|
|
" \"verbosity\": logging.INFO,\n",
|
|
"}\n",
|
|
"\n",
|
|
"automl_config = AutoMLConfig(task = 'classification',\n",
|
|
" debug_log = 'automl_errors.log',\n",
|
|
" compute_target = LocalTarget(),\n",
|
|
" enable_local_managed = True,\n",
|
|
" training_data = training_data,\n",
|
|
" label_column_name = label_column_name,\n",
|
|
" **automl_settings\n",
|
|
" )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"parent_run = experiment.submit(automl_config, show_output = True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# If you need to retrieve a run that already started, use the following code\n",
|
|
"#from azureml.train.automl.run import AutoMLRun\n",
|
|
"#parent_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"parent_run"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Results"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Explain model\n",
|
|
"\n",
|
|
"Automated ML models can be explained and visualized using the SDK Explainability library. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Analyze results\n",
|
|
"\n",
|
|
"### Retrieve the Best Child Run\n",
|
|
"\n",
|
|
"Below we select the best pipeline from our iterations. The `get_best_child` method returns the best run. Overloads on `get_best_child` allow you to retrieve the best run for *any* logged metric."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"best_run = parent_run.get_best_child()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Test the fitted model\n",
|
|
"\n",
|
|
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"X_test_df = validation_data.drop_columns(columns=[label_column_name])\n",
|
|
"y_test_df = validation_data.keep_columns(columns=[label_column_name], validate=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Creating ModelProxy for submitting prediction runs to the training environment.\n",
|
|
"We will create a ModelProxy for the best child run, which will allow us to submit a run that does the prediction in the training environment. Unlike the local client, which can have different versions of some libraries, the training environment will have all the compatible libraries for the model already."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from azureml.train.automl.model_proxy import ModelProxy\n",
|
|
"best_model_proxy = ModelProxy(best_run)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# call the predict functions on the model proxy\n",
|
|
"y_pred = best_model_proxy.predict(X_test_df).to_pandas_dataframe()\n",
|
|
"y_pred"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Acknowledgements"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
|
|
"\n",
|
|
"\n",
|
|
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net and the page of the DefeatFraud project\n",
|
|
"Please cite the following works: \n",
|
|
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
|
|
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
|
|
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
|
|
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
|
|
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
|
|
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"authors": [
|
|
{
|
|
"name": "sekrupa"
|
|
}
|
|
],
|
|
"category": "tutorial",
|
|
"compute": [
|
|
"AML Compute"
|
|
],
|
|
"datasets": [
|
|
"Creditcard"
|
|
],
|
|
"deployment": [
|
|
"None"
|
|
],
|
|
"exclude_from_index": false,
|
|
"file_extension": ".py",
|
|
"framework": [
|
|
"None"
|
|
],
|
|
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
|
|
"index_order": 5,
|
|
"kernelspec": {
|
|
"display_name": "Python 3.8 - AzureML",
|
|
"language": "python",
|
|
"name": "python38-azureml"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.7"
|
|
},
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"tags": [
|
|
"AutomatedML"
|
|
],
|
|
"task": "Classification",
|
|
"version": "3.6.7"
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |