1
0
mirror of synced 2026-01-03 15:04:01 -05:00
Files
airbyte/airbyte-cdk/python/airbyte_cdk/sources/utils/transform.py
Dmytro 1c5ac5b5ea 🏗️ Python CDK: add schema transformer class (#6139)
* Python CDK: add schema transformer class
2021-09-27 13:07:17 +03:00

197 lines
9.0 KiB
Python

#
# MIT License
#
# Copyright (c) 2020 Airbyte
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
from distutils.util import strtobool
from enum import Flag, auto
from typing import Any, Callable, Dict
from airbyte_cdk.logger import AirbyteLogger
from jsonschema import Draft7Validator, validators
logger = AirbyteLogger()
class TransformConfig(Flag):
"""
TypeTransformer class config. Configs can be combined using bitwise or operator e.g.
```
TransformConfig.DefaultSchemaNormalization | TransformConfig.CustomSchemaNormalization
```
"""
# No action taken, default behaviour. Cannot be combined with any other options.
NoTransform = auto()
# Applies default type casting with default_convert method which converts
# values by applying simple type casting to specified jsonschema type.
DefaultSchemaNormalization = auto()
# Allow registering custom type transformation callback. Can be combined
# with DefaultSchemaNormalization. In this case default type casting would
# be applied before custom one.
CustomSchemaNormalization = auto()
class TypeTransformer:
"""
Class for transforming object before output.
"""
_custom_normalizer: Callable[[Any, Dict[str, Any]], Any] = None
def __init__(self, config: TransformConfig):
"""
Initialize TypeTransformer instance.
:param config Transform config that would be applied to object
"""
if TransformConfig.NoTransform in config and config != TransformConfig.NoTransform:
raise Exception("NoTransform option cannot be combined with other flags.")
self._config = config
all_validators = {
key: self.__get_normalizer(key, orig_validator)
for key, orig_validator in Draft7Validator.VALIDATORS.items()
# Do not validate field we do not transform for maximum performance.
if key in ["type", "array", "$ref", "properties", "items"]
}
self._normalizer = validators.create(meta_schema=Draft7Validator.META_SCHEMA, validators=all_validators)
def registerCustomTransform(self, normalization_callback: Callable[[Any, Dict[str, Any]], Any]) -> Callable:
"""
Register custom normalization callback.
:param normalization_callback function to be used for value
normalization. Takes original value and part type schema. Should return
normalized value. See docs/connector-development/cdk-python/schemas.md
for details.
:return Same callbeck, this is usefull for using registerCustomTransform function as decorator.
"""
if TransformConfig.CustomSchemaNormalization not in self._config:
raise Exception("Please set TransformConfig.CustomSchemaNormalization config before registering custom normalizer")
self._custom_normalizer = normalization_callback
return normalization_callback
def __normalize(self, original_item: Any, subschema: Dict[str, Any]) -> Any:
"""
Applies different transform function to object's field according to config.
:param original_item original value of field.
:param subschema part of the jsonschema containing field type/format data.
:return Final field value.
"""
if TransformConfig.DefaultSchemaNormalization in self._config:
original_item = self.default_convert(original_item, subschema)
if self._custom_normalizer:
original_item = self._custom_normalizer(original_item, subschema)
return original_item
@staticmethod
def default_convert(original_item: Any, subschema: Dict[str, Any]) -> Any:
"""
Default transform function that is used when TransformConfig.DefaultSchemaNormalization flag set.
:param original_item original value of field.
:param subschema part of the jsonschema containing field type/format data.
:return transformed field value.
"""
target_type = subschema.get("type")
if original_item is None and "null" in target_type:
return None
if isinstance(target_type, list):
# jsonschema type could either be a single string or array of type
# strings. In case if there is some disambigous and more than one
# type (except null) do not do any conversion and return original
# value. If type array has one type and null i.e. {"type":
# ["integer", "null"]}, convert value to specified type.
target_type = [t for t in target_type if t != "null"]
if len(target_type) != 1:
return original_item
target_type = target_type[0]
try:
if target_type == "string":
return str(original_item)
elif target_type == "number":
return float(original_item)
elif target_type == "integer":
return int(original_item)
elif target_type == "boolean":
if isinstance(original_item, str):
return strtobool(original_item) == 1
return bool(original_item)
except ValueError:
return original_item
return original_item
def __get_normalizer(self, schema_key: str, original_validator: Callable):
"""
Traverse through object fields using native jsonschema validator and apply normalization function.
:param schema_key related json schema key that currently being validated/normalized.
:original_validator: native jsonschema validator callback.
"""
def normalizator(validator_instance: Callable, val: Any, instance: Any, schema: Dict[str, Any]):
"""
Jsonschema validator callable it uses for validating instance. We
override default Draft7Validator to perform value transformation
before validation take place. We do not take any action except
logging warn if object does not conform to json schema, just using
jsonschema algorithm to traverse through object fields.
Look
https://python-jsonschema.readthedocs.io/en/stable/creating/?highlight=validators.create#jsonschema.validators.create
validators parameter for detailed description.
:
"""
def resolve(subschema):
if "$ref" in subschema:
_, resolved = validator_instance.resolver.resolve(subschema["$ref"])
return resolved
return subschema
if schema_key == "type" and instance is not None:
if "object" in val and isinstance(instance, dict):
for k, subschema in schema.get("properties", {}).items():
if k in instance:
subschema = resolve(subschema)
instance[k] = self.__normalize(instance[k], subschema)
elif "array" in val and isinstance(instance, list):
subschema = schema.get("items", {})
subschema = resolve(subschema)
for index, item in enumerate(instance):
instance[index] = self.__normalize(item, subschema)
# Running native jsonschema traverse algorithm after field normalization is done.
yield from original_validator(validator_instance, val, instance, schema)
return normalizator
def transform(self, record: Dict[str, Any], schema: Dict[str, Any]):
"""
Normalize and validate according to config.
:param record record instance for normalization/transformation. All modification are done by modifing existent object.
:schema object's jsonschema for normalization.
"""
if TransformConfig.NoTransform in self._config:
return
normalizer = self._normalizer(schema)
for e in normalizer.iter_errors(record):
"""
just calling normalizer.validate() would throw an exception on
first validation occurences and stop processing rest of schema.
"""
logger.warn(e.message)