1
0
mirror of synced 2025-12-31 06:05:12 -05:00
Files
airbyte/airbyte-cdk/python/airbyte_cdk/sources/utils/transform.py
Alexandre Girard 677fa9756d Small fixes to support python3.8 (#23653)
* Use ** instead of |

* Using typing type

* Using typing type

* Using typing type

* Revert "Merge branch 'master' into alex/support_3.8"

This reverts commit 5c7581518e, reversing
changes made to 5cb47f8c70.

* Revert "Merge branch 'master' into alex/support_3.8"

This reverts commit 5cb47f8c70, reversing
changes made to 4058fce754.

* Revert "Merge branch 'master' into alex/support_3.8"

This reverts commit e1d109905a, reversing
changes made to da881ef0d7.

* reset changes

* undo borked publish

* downgrade bumpversion.cfg and Dockerfile too

* explicitely support >=3.8

* update readme
2023-03-01 19:14:27 -08:00

197 lines
9.3 KiB
Python

#
# Copyright (c) 2023 Airbyte, Inc., all rights reserved.
#
import logging
from distutils.util import strtobool
from enum import Flag, auto
from typing import Any, Callable, Dict, Mapping, Optional
from jsonschema import Draft7Validator, ValidationError, validators
json_to_python_simple = {"string": str, "number": float, "integer": int, "boolean": bool, "null": type(None)}
json_to_python = {**json_to_python_simple, **{"object": dict, "array": list}}
python_to_json = {v: k for k, v in json_to_python.items()}
logger = logging.getLogger("airbyte")
class TransformConfig(Flag):
"""
TypeTransformer class config. Configs can be combined using bitwise or operator e.g.
```
TransformConfig.DefaultSchemaNormalization | TransformConfig.CustomSchemaNormalization
```
"""
# No action taken, default behaviour. Cannot be combined with any other options.
NoTransform = auto()
# Applies default type casting with default_convert method which converts
# values by applying simple type casting to specified jsonschema type.
DefaultSchemaNormalization = auto()
# Allow registering custom type transformation callback. Can be combined
# with DefaultSchemaNormalization. In this case default type casting would
# be applied before custom one.
CustomSchemaNormalization = auto()
class TypeTransformer:
"""
Class for transforming object before output.
"""
_custom_normalizer: Optional[Callable[[Any, Dict[str, Any]], Any]] = None
def __init__(self, config: TransformConfig):
"""
Initialize TypeTransformer instance.
:param config Transform config that would be applied to object
"""
if TransformConfig.NoTransform in config and config != TransformConfig.NoTransform:
raise Exception("NoTransform option cannot be combined with other flags.")
self._config = config
all_validators = {
key: self.__get_normalizer(key, orig_validator)
for key, orig_validator in Draft7Validator.VALIDATORS.items()
# Do not validate field we do not transform for maximum performance.
if key in ["type", "array", "$ref", "properties", "items"]
}
self._normalizer = validators.create(meta_schema=Draft7Validator.META_SCHEMA, validators=all_validators)
def registerCustomTransform(self, normalization_callback: Callable[[Any, Dict[str, Any]], Any]) -> Callable:
"""
Register custom normalization callback.
:param normalization_callback function to be used for value
normalization. Takes original value and part type schema. Should return
normalized value. See docs/connector-development/cdk-python/schemas.md
for details.
:return Same callbeck, this is usefull for using registerCustomTransform function as decorator.
"""
if TransformConfig.CustomSchemaNormalization not in self._config:
raise Exception("Please set TransformConfig.CustomSchemaNormalization config before registering custom normalizer")
self._custom_normalizer = normalization_callback
return normalization_callback
def __normalize(self, original_item: Any, subschema: Dict[str, Any]) -> Any:
"""
Applies different transform function to object's field according to config.
:param original_item original value of field.
:param subschema part of the jsonschema containing field type/format data.
:return Final field value.
"""
if TransformConfig.DefaultSchemaNormalization in self._config:
original_item = self.default_convert(original_item, subschema)
if self._custom_normalizer:
original_item = self._custom_normalizer(original_item, subschema)
return original_item
@staticmethod
def default_convert(original_item: Any, subschema: Dict[str, Any]) -> Any:
"""
Default transform function that is used when TransformConfig.DefaultSchemaNormalization flag set.
:param original_item original value of field.
:param subschema part of the jsonschema containing field type/format data.
:return transformed field value.
"""
target_type = subschema.get("type", [])
if original_item is None and "null" in target_type:
return None
if isinstance(target_type, list):
# jsonschema type could either be a single string or array of type
# strings. In case if there is some disambigous and more than one
# type (except null) do not do any conversion and return original
# value. If type array has one type and null i.e. {"type":
# ["integer", "null"]}, convert value to specified type.
target_type = [t for t in target_type if t != "null"]
if len(target_type) != 1:
return original_item
target_type = target_type[0]
try:
if target_type == "string":
return str(original_item)
elif target_type == "number":
return float(original_item)
elif target_type == "integer":
return int(original_item)
elif target_type == "boolean":
if isinstance(original_item, str):
return strtobool(original_item) == 1
return bool(original_item)
elif target_type == "array":
item_types = set(subschema.get("items", {}).get("type", set()))
if item_types.issubset(json_to_python_simple) and type(original_item) in json_to_python_simple.values():
return [original_item]
except (ValueError, TypeError):
return original_item
return original_item
def __get_normalizer(self, schema_key: str, original_validator: Callable):
"""
Traverse through object fields using native jsonschema validator and apply normalization function.
:param schema_key related json schema key that currently being validated/normalized.
:original_validator: native jsonschema validator callback.
"""
def normalizator(validator_instance: Callable, property_value: Any, instance: Any, schema: Dict[str, Any]):
"""
Jsonschema validator callable it uses for validating instance. We
override default Draft7Validator to perform value transformation
before validation take place. We do not take any action except
logging warn if object does not conform to json schema, just using
jsonschema algorithm to traverse through object fields.
Look
https://python-jsonschema.readthedocs.io/en/stable/creating/?highlight=validators.create#jsonschema.validators.create
validators parameter for detailed description.
:
"""
def resolve(subschema):
if "$ref" in subschema:
_, resolved = validator_instance.resolver.resolve(subschema["$ref"])
return resolved
return subschema
# Transform object and array values before running json schema type checking for each element.
# Recursively normalize every value of the "instance" sub-object,
# if "instance" is an incorrect type - skip recursive normalization of "instance"
if schema_key == "properties" and isinstance(instance, dict):
for k, subschema in property_value.items():
if k in instance:
subschema = resolve(subschema)
instance[k] = self.__normalize(instance[k], subschema)
# Recursively normalize every item of the "instance" sub-array,
# if "instance" is an incorrect type - skip recursive normalization of "instance"
elif schema_key == "items" and isinstance(instance, list):
subschema = resolve(property_value)
for index, item in enumerate(instance):
instance[index] = self.__normalize(item, subschema)
# Running native jsonschema traverse algorithm after field normalization is done.
yield from original_validator(validator_instance, property_value, instance, schema)
return normalizator
def transform(self, record: Dict[str, Any], schema: Mapping[str, Any]):
"""
Normalize and validate according to config.
:param record: record instance for normalization/transformation. All modification are done by modifying existent object.
:param schema: object's jsonschema for normalization.
"""
if TransformConfig.NoTransform in self._config:
return
normalizer = self._normalizer(schema)
for e in normalizer.iter_errors(record):
"""
just calling normalizer.validate() would throw an exception on
first validation occurences and stop processing rest of schema.
"""
logger.warning(self.get_error_message(e))
def get_error_message(self, e: ValidationError) -> str:
instance_json_type = python_to_json[type(e.instance)]
key_path = "." + ".".join(map(str, e.path))
return (
f"Failed to transform value {repr(e.instance)} of type '{instance_json_type}' to '{e.validator_value}', key path: '{key_path}'"
)