feat: add Tencent Cloud APM tracing integration (#25657)

Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
This commit is contained in:
XlKsyt
2025-10-14 10:21:17 +08:00
committed by GitHub
parent 8e01bb40fe
commit 0b35bc1ede
32 changed files with 2739 additions and 1012 deletions

View File

@@ -7,7 +7,7 @@ import uuid
from collections import deque
from collections.abc import Sequence
from datetime import datetime
from typing import Final
from typing import Final, cast
from urllib.parse import urljoin
import httpx
@@ -199,7 +199,7 @@ def convert_to_trace_id(uuid_v4: str | None) -> int:
raise ValueError("UUID cannot be None")
try:
uuid_obj = uuid.UUID(uuid_v4)
return uuid_obj.int
return cast(int, uuid_obj.int)
except ValueError as e:
raise ValueError(f"Invalid UUID input: {uuid_v4}") from e

View File

@@ -13,6 +13,7 @@ class TracingProviderEnum(StrEnum):
OPIK = "opik"
WEAVE = "weave"
ALIYUN = "aliyun"
TENCENT = "tencent"
class BaseTracingConfig(BaseModel):
@@ -195,5 +196,32 @@ class AliyunConfig(BaseTracingConfig):
return validate_url_with_path(v, "https://tracing-analysis-dc-hz.aliyuncs.com")
class TencentConfig(BaseTracingConfig):
"""
Tencent APM tracing config
"""
token: str
endpoint: str
service_name: str
@field_validator("token")
@classmethod
def token_validator(cls, v, info: ValidationInfo):
if not v or v.strip() == "":
raise ValueError("Token cannot be empty")
return v
@field_validator("endpoint")
@classmethod
def endpoint_validator(cls, v, info: ValidationInfo):
return cls.validate_endpoint_url(v, "https://apm.tencentcloudapi.com")
@field_validator("service_name")
@classmethod
def service_name_validator(cls, v, info: ValidationInfo):
return cls.validate_project_field(v, "dify_app")
OPS_FILE_PATH = "ops_trace/"
OPS_TRACE_FAILED_KEY = "FAILED_OPS_TRACE"

View File

@@ -90,6 +90,7 @@ class SuggestedQuestionTraceInfo(BaseTraceInfo):
class DatasetRetrievalTraceInfo(BaseTraceInfo):
documents: Any = None
error: str | None = None
class ToolTraceInfo(BaseTraceInfo):

View File

@@ -120,6 +120,17 @@ class OpsTraceProviderConfigMap(collections.UserDict[str, dict[str, Any]]):
"trace_instance": AliyunDataTrace,
}
case TracingProviderEnum.TENCENT:
from core.ops.entities.config_entity import TencentConfig
from core.ops.tencent_trace.tencent_trace import TencentDataTrace
return {
"config_class": TencentConfig,
"secret_keys": ["token"],
"other_keys": ["endpoint", "service_name"],
"trace_instance": TencentDataTrace,
}
case _:
raise KeyError(f"Unsupported tracing provider: {provider}")
@@ -723,6 +734,7 @@ class TraceTask:
end_time=timer.get("end"),
metadata=metadata,
message_data=message_data.to_dict(),
error=kwargs.get("error"),
)
return dataset_retrieval_trace_info
@@ -889,6 +901,7 @@ class TraceQueueManager:
continue
file_id = uuid4().hex
trace_info = task.execute()
task_data = TaskData(
app_id=task.app_id,
trace_info_type=type(trace_info).__name__,

View File

View File

@@ -0,0 +1,337 @@
"""
Tencent APM Trace Client - handles network operations, metrics, and API communication
"""
from __future__ import annotations
import importlib
import logging
import os
import socket
from typing import TYPE_CHECKING
from urllib.parse import urlparse
if TYPE_CHECKING:
from opentelemetry.metrics import Meter
from opentelemetry.metrics._internal.instrument import Histogram
from opentelemetry.sdk.metrics.export import MetricReader
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.semconv.resource import ResourceAttributes
from opentelemetry.trace import SpanKind
from opentelemetry.util.types import AttributeValue
from configs import dify_config
from .entities.tencent_semconv import LLM_OPERATION_DURATION
from .entities.tencent_trace_entity import SpanData
logger = logging.getLogger(__name__)
class TencentTraceClient:
"""Tencent APM trace client using OpenTelemetry OTLP exporter"""
def __init__(
self,
service_name: str,
endpoint: str,
token: str,
max_queue_size: int = 1000,
schedule_delay_sec: int = 5,
max_export_batch_size: int = 50,
metrics_export_interval_sec: int = 10,
):
self.endpoint = endpoint
self.token = token
self.service_name = service_name
self.metrics_export_interval_sec = metrics_export_interval_sec
self.resource = Resource(
attributes={
ResourceAttributes.SERVICE_NAME: service_name,
ResourceAttributes.SERVICE_VERSION: f"dify-{dify_config.project.version}-{dify_config.COMMIT_SHA}",
ResourceAttributes.DEPLOYMENT_ENVIRONMENT: f"{dify_config.DEPLOY_ENV}-{dify_config.EDITION}",
ResourceAttributes.HOST_NAME: socket.gethostname(),
}
)
# Prepare gRPC endpoint/metadata
grpc_endpoint, insecure, _, _ = self._resolve_grpc_target(endpoint)
headers = (("authorization", f"Bearer {token}"),)
self.exporter = OTLPSpanExporter(
endpoint=grpc_endpoint,
headers=headers,
insecure=insecure,
timeout=30,
)
self.tracer_provider = TracerProvider(resource=self.resource)
self.span_processor = BatchSpanProcessor(
span_exporter=self.exporter,
max_queue_size=max_queue_size,
schedule_delay_millis=schedule_delay_sec * 1000,
max_export_batch_size=max_export_batch_size,
)
self.tracer_provider.add_span_processor(self.span_processor)
self.tracer = self.tracer_provider.get_tracer("dify.tencent_apm")
# Store span contexts for parent-child relationships
self.span_contexts: dict[int, trace_api.SpanContext] = {}
self.meter: Meter | None = None
self.hist_llm_duration: Histogram | None = None
self.metric_reader: MetricReader | None = None
# Metrics exporter and instruments
try:
from opentelemetry import metrics
from opentelemetry.sdk.metrics import Histogram, MeterProvider
from opentelemetry.sdk.metrics.export import AggregationTemporality, PeriodicExportingMetricReader
protocol = os.getenv("OTEL_EXPORTER_OTLP_PROTOCOL", "").strip().lower()
use_http_protobuf = protocol in {"http/protobuf", "http-protobuf"}
use_http_json = protocol in {"http/json", "http-json"}
# Set preferred temporality for histograms to DELTA
preferred_temporality: dict[type, AggregationTemporality] = {Histogram: AggregationTemporality.DELTA}
def _create_metric_exporter(exporter_cls, **kwargs):
"""Create metric exporter with preferred_temporality support"""
try:
return exporter_cls(**kwargs, preferred_temporality=preferred_temporality)
except Exception:
return exporter_cls(**kwargs)
metric_reader = None
if use_http_json:
exporter_cls = None
for mod_path in (
"opentelemetry.exporter.otlp.http.json.metric_exporter",
"opentelemetry.exporter.otlp.json.metric_exporter",
):
try:
mod = importlib.import_module(mod_path)
exporter_cls = getattr(mod, "OTLPMetricExporter", None)
if exporter_cls:
break
except Exception:
continue
if exporter_cls is not None:
metric_exporter = _create_metric_exporter(
exporter_cls,
endpoint=endpoint,
headers={"authorization": f"Bearer {token}"},
)
else:
from opentelemetry.exporter.otlp.proto.http.metric_exporter import (
OTLPMetricExporter as HttpMetricExporter,
)
metric_exporter = _create_metric_exporter(
HttpMetricExporter,
endpoint=endpoint,
headers={"authorization": f"Bearer {token}"},
)
metric_reader = PeriodicExportingMetricReader(
metric_exporter, export_interval_millis=self.metrics_export_interval_sec * 1000
)
elif use_http_protobuf:
from opentelemetry.exporter.otlp.proto.http.metric_exporter import (
OTLPMetricExporter as HttpMetricExporter,
)
metric_exporter = _create_metric_exporter(
HttpMetricExporter,
endpoint=endpoint,
headers={"authorization": f"Bearer {token}"},
)
metric_reader = PeriodicExportingMetricReader(
metric_exporter, export_interval_millis=self.metrics_export_interval_sec * 1000
)
else:
from opentelemetry.exporter.otlp.proto.grpc.metric_exporter import (
OTLPMetricExporter as GrpcMetricExporter,
)
m_grpc_endpoint, m_insecure, _, _ = self._resolve_grpc_target(endpoint)
metric_exporter = _create_metric_exporter(
GrpcMetricExporter,
endpoint=m_grpc_endpoint,
headers={"authorization": f"Bearer {token}"},
insecure=m_insecure,
)
metric_reader = PeriodicExportingMetricReader(
metric_exporter, export_interval_millis=self.metrics_export_interval_sec * 1000
)
if metric_reader is not None:
provider = MeterProvider(resource=self.resource, metric_readers=[metric_reader])
metrics.set_meter_provider(provider)
self.meter = metrics.get_meter("dify-sdk", dify_config.project.version)
self.hist_llm_duration = self.meter.create_histogram(
name=LLM_OPERATION_DURATION,
unit="s",
description="LLM operation duration (seconds)",
)
self.metric_reader = metric_reader
else:
self.meter = None
self.hist_llm_duration = None
self.metric_reader = None
except Exception:
logger.exception("[Tencent APM] Metrics initialization failed; metrics disabled")
self.meter = None
self.hist_llm_duration = None
self.metric_reader = None
def add_span(self, span_data: SpanData) -> None:
"""Create and export span using OpenTelemetry Tracer API"""
try:
self._create_and_export_span(span_data)
logger.debug("[Tencent APM] Created span: %s", span_data.name)
except Exception:
logger.exception("[Tencent APM] Failed to create span: %s", span_data.name)
# Metrics recording API
def record_llm_duration(self, latency_seconds: float, attributes: dict[str, str] | None = None) -> None:
"""Record LLM operation duration histogram in seconds."""
try:
if not hasattr(self, "hist_llm_duration") or self.hist_llm_duration is None:
return
attrs: dict[str, str] = {}
if attributes:
for k, v in attributes.items():
attrs[k] = str(v) if not isinstance(v, (str, int, float, bool)) else v # type: ignore[assignment]
self.hist_llm_duration.record(latency_seconds, attrs) # type: ignore[attr-defined]
except Exception:
logger.debug("[Tencent APM] Failed to record LLM duration", exc_info=True)
def _create_and_export_span(self, span_data: SpanData) -> None:
"""Create span using OpenTelemetry Tracer API"""
try:
parent_context = None
if span_data.parent_span_id and span_data.parent_span_id in self.span_contexts:
parent_context = trace_api.set_span_in_context(
trace_api.NonRecordingSpan(self.span_contexts[span_data.parent_span_id])
)
span = self.tracer.start_span(
name=span_data.name,
context=parent_context,
kind=SpanKind.INTERNAL,
start_time=span_data.start_time,
)
self.span_contexts[span_data.span_id] = span.get_span_context()
if span_data.attributes:
attributes: dict[str, AttributeValue] = {}
for key, value in span_data.attributes.items():
if isinstance(value, (int, float, bool)):
attributes[key] = value
else:
attributes[key] = str(value)
span.set_attributes(attributes)
if span_data.events:
for event in span_data.events:
span.add_event(event.name, event.attributes, event.timestamp)
if span_data.status:
span.set_status(span_data.status)
# Manually end span; do not use context manager to avoid double-end warnings
span.end(end_time=span_data.end_time)
except Exception:
logger.exception("[Tencent APM] Error creating span: %s", span_data.name)
def api_check(self) -> bool:
"""Check API connectivity using socket connection test for gRPC endpoints"""
try:
# Resolve gRPC target consistently with exporters
_, _, host, port = self._resolve_grpc_target(self.endpoint)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(5)
result = sock.connect_ex((host, port))
sock.close()
if result == 0:
logger.info("[Tencent APM] Endpoint %s:%s is accessible", host, port)
return True
else:
logger.warning("[Tencent APM] Endpoint %s:%s is not accessible", host, port)
if host in ["127.0.0.1", "localhost"]:
logger.info("[Tencent APM] Development environment detected, allowing config save")
return True
return False
except Exception:
logger.exception("[Tencent APM] API check failed")
if "127.0.0.1" in self.endpoint or "localhost" in self.endpoint:
return True
return False
def get_project_url(self) -> str:
"""Get project console URL"""
return "https://console.cloud.tencent.com/apm"
def shutdown(self) -> None:
"""Shutdown the client and export remaining spans"""
try:
if self.span_processor:
logger.info("[Tencent APM] Flushing remaining spans before shutdown")
_ = self.span_processor.force_flush()
self.span_processor.shutdown()
if self.tracer_provider:
self.tracer_provider.shutdown()
if self.metric_reader is not None:
try:
self.metric_reader.shutdown() # type: ignore[attr-defined]
except Exception:
pass
except Exception:
logger.exception("[Tencent APM] Error during client shutdown")
@staticmethod
def _resolve_grpc_target(endpoint: str, default_port: int = 4317) -> tuple[str, bool, str, int]:
"""Normalize endpoint to gRPC target and security flag.
Returns:
(grpc_endpoint, insecure, host, port)
"""
try:
if endpoint.startswith(("http://", "https://")):
parsed = urlparse(endpoint)
host = parsed.hostname or "localhost"
port = parsed.port or default_port
insecure = parsed.scheme == "http"
return f"{host}:{port}", insecure, host, port
host = endpoint
port = default_port
if ":" in endpoint:
parts = endpoint.rsplit(":", 1)
host = parts[0] or "localhost"
try:
port = int(parts[1])
except Exception:
port = default_port
insecure = ("localhost" in host) or ("127.0.0.1" in host)
return f"{host}:{port}", insecure, host, port
except Exception:
host, port = "localhost", default_port
return f"{host}:{port}", True, host, port

View File

@@ -0,0 +1 @@
# Tencent trace entities module

View File

@@ -0,0 +1,73 @@
from enum import Enum
# public
GEN_AI_SESSION_ID = "gen_ai.session.id"
GEN_AI_USER_ID = "gen_ai.user.id"
GEN_AI_USER_NAME = "gen_ai.user.name"
GEN_AI_SPAN_KIND = "gen_ai.span.kind"
GEN_AI_FRAMEWORK = "gen_ai.framework"
GEN_AI_IS_ENTRY = "gen_ai.is_entry" # mark to count the LLM-related traces
# Chain
INPUT_VALUE = "gen_ai.entity.input"
OUTPUT_VALUE = "gen_ai.entity.output"
# Retriever
RETRIEVAL_QUERY = "retrieval.query"
RETRIEVAL_DOCUMENT = "retrieval.document"
# GENERATION
GEN_AI_MODEL_NAME = "gen_ai.response.model"
GEN_AI_PROVIDER = "gen_ai.provider.name"
GEN_AI_USAGE_INPUT_TOKENS = "gen_ai.usage.input_tokens"
GEN_AI_USAGE_OUTPUT_TOKENS = "gen_ai.usage.output_tokens"
GEN_AI_USAGE_TOTAL_TOKENS = "gen_ai.usage.total_tokens"
GEN_AI_PROMPT_TEMPLATE_TEMPLATE = "gen_ai.prompt_template.template"
GEN_AI_PROMPT_TEMPLATE_VARIABLE = "gen_ai.prompt_template.variable"
GEN_AI_PROMPT = "gen_ai.prompt"
GEN_AI_COMPLETION = "gen_ai.completion"
GEN_AI_RESPONSE_FINISH_REASON = "gen_ai.response.finish_reason"
# Tool
TOOL_NAME = "tool.name"
TOOL_DESCRIPTION = "tool.description"
TOOL_PARAMETERS = "tool.parameters"
# Instrumentation Library
INSTRUMENTATION_NAME = "dify-sdk"
INSTRUMENTATION_VERSION = "0.1.0"
INSTRUMENTATION_LANGUAGE = "python"
# Metrics
LLM_OPERATION_DURATION = "gen_ai.client.operation.duration"
class GenAISpanKind(Enum):
WORKFLOW = "WORKFLOW" # OpenLLMetry
RETRIEVER = "RETRIEVER" # RAG
GENERATION = "GENERATION" # Langfuse
TOOL = "TOOL" # OpenLLMetry
AGENT = "AGENT" # OpenLLMetry
TASK = "TASK" # OpenLLMetry

View File

@@ -0,0 +1,21 @@
from collections.abc import Sequence
from opentelemetry import trace as trace_api
from opentelemetry.sdk.trace import Event
from opentelemetry.trace import Status, StatusCode
from pydantic import BaseModel, Field
class SpanData(BaseModel):
model_config = {"arbitrary_types_allowed": True}
trace_id: int = Field(..., description="The unique identifier for the trace.")
parent_span_id: int | None = Field(None, description="The ID of the parent span, if any.")
span_id: int = Field(..., description="The unique identifier for this span.")
name: str = Field(..., description="The name of the span.")
attributes: dict[str, str] = Field(default_factory=dict, description="Attributes associated with the span.")
events: Sequence[Event] = Field(default_factory=list, description="Events recorded in the span.")
links: Sequence[trace_api.Link] = Field(default_factory=list, description="Links to other spans.")
status: Status = Field(default=Status(StatusCode.UNSET), description="The status of the span.")
start_time: int = Field(..., description="The start time of the span in nanoseconds.")
end_time: int = Field(..., description="The end time of the span in nanoseconds.")

View File

@@ -0,0 +1,372 @@
"""
Tencent APM Span Builder - handles all span construction logic
"""
import json
import logging
from datetime import datetime
from opentelemetry.trace import Status, StatusCode
from core.ops.entities.trace_entity import (
DatasetRetrievalTraceInfo,
MessageTraceInfo,
ToolTraceInfo,
WorkflowTraceInfo,
)
from core.ops.tencent_trace.entities.tencent_semconv import (
GEN_AI_COMPLETION,
GEN_AI_FRAMEWORK,
GEN_AI_IS_ENTRY,
GEN_AI_MODEL_NAME,
GEN_AI_PROMPT,
GEN_AI_PROVIDER,
GEN_AI_RESPONSE_FINISH_REASON,
GEN_AI_SESSION_ID,
GEN_AI_SPAN_KIND,
GEN_AI_USAGE_INPUT_TOKENS,
GEN_AI_USAGE_OUTPUT_TOKENS,
GEN_AI_USAGE_TOTAL_TOKENS,
GEN_AI_USER_ID,
INPUT_VALUE,
OUTPUT_VALUE,
RETRIEVAL_DOCUMENT,
RETRIEVAL_QUERY,
TOOL_DESCRIPTION,
TOOL_NAME,
TOOL_PARAMETERS,
GenAISpanKind,
)
from core.ops.tencent_trace.entities.tencent_trace_entity import SpanData
from core.ops.tencent_trace.utils import TencentTraceUtils
from core.rag.models.document import Document
from core.workflow.entities.workflow_node_execution import (
WorkflowNodeExecution,
WorkflowNodeExecutionMetadataKey,
WorkflowNodeExecutionStatus,
)
logger = logging.getLogger(__name__)
class TencentSpanBuilder:
"""Builder class for constructing different types of spans"""
@staticmethod
def _get_time_nanoseconds(time_value: datetime | None) -> int:
"""Convert datetime to nanoseconds for span creation."""
return TencentTraceUtils.convert_datetime_to_nanoseconds(time_value)
@staticmethod
def build_workflow_spans(
trace_info: WorkflowTraceInfo, trace_id: int, user_id: str, links: list | None = None
) -> list[SpanData]:
"""Build workflow-related spans"""
spans = []
links = links or []
message_span_id = None
workflow_span_id = TencentTraceUtils.convert_to_span_id(trace_info.workflow_run_id, "workflow")
if hasattr(trace_info, "metadata") and trace_info.metadata.get("conversation_id"):
message_span_id = TencentTraceUtils.convert_to_span_id(trace_info.workflow_run_id, "message")
status = Status(StatusCode.OK)
if trace_info.error:
status = Status(StatusCode.ERROR, trace_info.error)
if message_span_id:
message_span = TencentSpanBuilder._build_message_span(
trace_info, trace_id, message_span_id, user_id, status, links
)
spans.append(message_span)
workflow_span = TencentSpanBuilder._build_workflow_span(
trace_info, trace_id, workflow_span_id, message_span_id, user_id, status, links
)
spans.append(workflow_span)
return spans
@staticmethod
def _build_message_span(
trace_info: WorkflowTraceInfo, trace_id: int, message_span_id: int, user_id: str, status: Status, links: list
) -> SpanData:
"""Build message span for chatflow"""
return SpanData(
trace_id=trace_id,
parent_span_id=None,
span_id=message_span_id,
name="message",
start_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.start_time),
end_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.WORKFLOW.value,
GEN_AI_FRAMEWORK: "dify",
GEN_AI_IS_ENTRY: "true",
INPUT_VALUE: trace_info.workflow_run_inputs.get("sys.query", ""),
OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
},
status=status,
links=links,
)
@staticmethod
def _build_workflow_span(
trace_info: WorkflowTraceInfo,
trace_id: int,
workflow_span_id: int,
message_span_id: int | None,
user_id: str,
status: Status,
links: list,
) -> SpanData:
"""Build workflow span"""
attributes = {
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.WORKFLOW.value,
GEN_AI_FRAMEWORK: "dify",
INPUT_VALUE: json.dumps(trace_info.workflow_run_inputs, ensure_ascii=False),
OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
}
if message_span_id is None:
attributes[GEN_AI_IS_ENTRY] = "true"
return SpanData(
trace_id=trace_id,
parent_span_id=message_span_id,
span_id=workflow_span_id,
name="workflow",
start_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.start_time),
end_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.end_time),
attributes=attributes,
status=status,
links=links,
)
@staticmethod
def build_workflow_llm_span(
trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
"""Build LLM span for workflow nodes."""
process_data = node_execution.process_data or {}
outputs = node_execution.outputs or {}
usage_data = process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=TencentTraceUtils.convert_to_span_id(node_execution.id, "node"),
name="GENERATION",
start_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.created_at),
end_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SPAN_KIND: GenAISpanKind.GENERATION.value,
GEN_AI_FRAMEWORK: "dify",
GEN_AI_MODEL_NAME: process_data.get("model_name", ""),
GEN_AI_PROVIDER: process_data.get("model_provider", ""),
GEN_AI_USAGE_INPUT_TOKENS: str(usage_data.get("prompt_tokens", 0)),
GEN_AI_USAGE_OUTPUT_TOKENS: str(usage_data.get("completion_tokens", 0)),
GEN_AI_USAGE_TOTAL_TOKENS: str(usage_data.get("total_tokens", 0)),
GEN_AI_PROMPT: json.dumps(process_data.get("prompts", []), ensure_ascii=False),
GEN_AI_COMPLETION: str(outputs.get("text", "")),
GEN_AI_RESPONSE_FINISH_REASON: outputs.get("finish_reason", ""),
INPUT_VALUE: json.dumps(process_data.get("prompts", []), ensure_ascii=False),
OUTPUT_VALUE: str(outputs.get("text", "")),
},
status=TencentSpanBuilder._get_workflow_node_status(node_execution),
)
@staticmethod
def build_message_span(
trace_info: MessageTraceInfo, trace_id: int, user_id: str, links: list | None = None
) -> SpanData:
"""Build message span."""
links = links or []
status = Status(StatusCode.OK)
if trace_info.error:
status = Status(StatusCode.ERROR, trace_info.error)
return SpanData(
trace_id=trace_id,
parent_span_id=None,
span_id=TencentTraceUtils.convert_to_span_id(trace_info.message_id, "message"),
name="message",
start_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.start_time),
end_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_USER_ID: str(user_id),
GEN_AI_SPAN_KIND: GenAISpanKind.WORKFLOW.value,
GEN_AI_FRAMEWORK: "dify",
GEN_AI_IS_ENTRY: "true",
INPUT_VALUE: str(trace_info.inputs or ""),
OUTPUT_VALUE: str(trace_info.outputs or ""),
},
status=status,
links=links,
)
@staticmethod
def build_tool_span(trace_info: ToolTraceInfo, trace_id: int, parent_span_id: int) -> SpanData:
"""Build tool span."""
status = Status(StatusCode.OK)
if trace_info.error:
status = Status(StatusCode.ERROR, trace_info.error)
return SpanData(
trace_id=trace_id,
parent_span_id=parent_span_id,
span_id=TencentTraceUtils.convert_to_span_id(trace_info.message_id, "tool"),
name=trace_info.tool_name,
start_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.start_time),
end_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.TOOL.value,
GEN_AI_FRAMEWORK: "dify",
TOOL_NAME: trace_info.tool_name,
TOOL_DESCRIPTION: "",
TOOL_PARAMETERS: json.dumps(trace_info.tool_parameters, ensure_ascii=False),
INPUT_VALUE: json.dumps(trace_info.tool_inputs, ensure_ascii=False),
OUTPUT_VALUE: str(trace_info.tool_outputs),
},
status=status,
)
@staticmethod
def build_retrieval_span(trace_info: DatasetRetrievalTraceInfo, trace_id: int, parent_span_id: int) -> SpanData:
"""Build dataset retrieval span."""
status = Status(StatusCode.OK)
if getattr(trace_info, "error", None):
status = Status(StatusCode.ERROR, trace_info.error) # type: ignore[arg-type]
documents_data = TencentSpanBuilder._extract_retrieval_documents(trace_info.documents)
return SpanData(
trace_id=trace_id,
parent_span_id=parent_span_id,
span_id=TencentTraceUtils.convert_to_span_id(trace_info.message_id, "retrieval"),
name="retrieval",
start_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.start_time),
end_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.end_time),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.RETRIEVER.value,
GEN_AI_FRAMEWORK: "dify",
RETRIEVAL_QUERY: str(trace_info.inputs or ""),
RETRIEVAL_DOCUMENT: json.dumps(documents_data, ensure_ascii=False),
INPUT_VALUE: str(trace_info.inputs or ""),
OUTPUT_VALUE: json.dumps(documents_data, ensure_ascii=False),
},
status=status,
)
@staticmethod
def _get_workflow_node_status(node_execution: WorkflowNodeExecution) -> Status:
"""Get workflow node execution status."""
if node_execution.status == WorkflowNodeExecutionStatus.SUCCEEDED:
return Status(StatusCode.OK)
elif node_execution.status in [WorkflowNodeExecutionStatus.FAILED, WorkflowNodeExecutionStatus.EXCEPTION]:
return Status(StatusCode.ERROR, str(node_execution.error))
return Status(StatusCode.UNSET)
@staticmethod
def build_workflow_retrieval_span(
trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
"""Build knowledge retrieval span for workflow nodes."""
input_value = ""
if node_execution.inputs:
input_value = str(node_execution.inputs.get("query", ""))
output_value = ""
if node_execution.outputs:
output_value = json.dumps(node_execution.outputs.get("result", []), ensure_ascii=False)
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=TencentTraceUtils.convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.created_at),
end_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SPAN_KIND: GenAISpanKind.RETRIEVER.value,
GEN_AI_FRAMEWORK: "dify",
RETRIEVAL_QUERY: input_value,
RETRIEVAL_DOCUMENT: output_value,
INPUT_VALUE: input_value,
OUTPUT_VALUE: output_value,
},
status=TencentSpanBuilder._get_workflow_node_status(node_execution),
)
@staticmethod
def build_workflow_tool_span(
trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
"""Build tool span for workflow nodes."""
tool_des = {}
if node_execution.metadata:
tool_des = node_execution.metadata.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO, {})
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=TencentTraceUtils.convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.created_at),
end_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SPAN_KIND: GenAISpanKind.TOOL.value,
GEN_AI_FRAMEWORK: "dify",
TOOL_NAME: node_execution.title,
TOOL_DESCRIPTION: json.dumps(tool_des, ensure_ascii=False),
TOOL_PARAMETERS: json.dumps(node_execution.inputs or {}, ensure_ascii=False),
INPUT_VALUE: json.dumps(node_execution.inputs or {}, ensure_ascii=False),
OUTPUT_VALUE: json.dumps(node_execution.outputs, ensure_ascii=False),
},
status=TencentSpanBuilder._get_workflow_node_status(node_execution),
)
@staticmethod
def build_workflow_task_span(
trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
) -> SpanData:
"""Build generic task span for workflow nodes."""
return SpanData(
trace_id=trace_id,
parent_span_id=workflow_span_id,
span_id=TencentTraceUtils.convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.created_at),
end_time=TencentSpanBuilder._get_time_nanoseconds(node_execution.finished_at),
attributes={
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
GEN_AI_SPAN_KIND: GenAISpanKind.TASK.value,
GEN_AI_FRAMEWORK: "dify",
INPUT_VALUE: json.dumps(node_execution.inputs, ensure_ascii=False),
OUTPUT_VALUE: json.dumps(node_execution.outputs, ensure_ascii=False),
},
status=TencentSpanBuilder._get_workflow_node_status(node_execution),
)
@staticmethod
def _extract_retrieval_documents(documents: list[Document]):
"""Extract documents data for retrieval tracing."""
documents_data = []
for document in documents:
document_data = {
"content": document.page_content,
"metadata": {
"dataset_id": document.metadata.get("dataset_id"),
"doc_id": document.metadata.get("doc_id"),
"document_id": document.metadata.get("document_id"),
},
"score": document.metadata.get("score"),
}
documents_data.append(document_data)
return documents_data

View File

@@ -0,0 +1,317 @@
"""
Tencent APM tracing implementation with separated concerns
"""
import logging
from sqlalchemy import select
from sqlalchemy.orm import Session, sessionmaker
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import TencentConfig
from core.ops.entities.trace_entity import (
BaseTraceInfo,
DatasetRetrievalTraceInfo,
GenerateNameTraceInfo,
MessageTraceInfo,
ModerationTraceInfo,
SuggestedQuestionTraceInfo,
ToolTraceInfo,
WorkflowTraceInfo,
)
from core.ops.tencent_trace.client import TencentTraceClient
from core.ops.tencent_trace.entities.tencent_trace_entity import SpanData
from core.ops.tencent_trace.span_builder import TencentSpanBuilder
from core.ops.tencent_trace.utils import TencentTraceUtils
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.entities.workflow_node_execution import (
WorkflowNodeExecution,
)
from core.workflow.nodes import NodeType
from extensions.ext_database import db
from models import Account, App, TenantAccountJoin, WorkflowNodeExecutionTriggeredFrom
logger = logging.getLogger(__name__)
class TencentDataTrace(BaseTraceInstance):
"""
Tencent APM trace implementation with single responsibility principle.
Acts as a coordinator that delegates specific tasks to specialized classes.
"""
def __init__(self, tencent_config: TencentConfig):
super().__init__(tencent_config)
self.trace_client = TencentTraceClient(
service_name=tencent_config.service_name,
endpoint=tencent_config.endpoint,
token=tencent_config.token,
metrics_export_interval_sec=5,
)
def trace(self, trace_info: BaseTraceInfo) -> None:
"""Main tracing entry point - coordinates different trace types."""
if isinstance(trace_info, WorkflowTraceInfo):
self.workflow_trace(trace_info)
elif isinstance(trace_info, MessageTraceInfo):
self.message_trace(trace_info)
elif isinstance(trace_info, ModerationTraceInfo):
pass
elif isinstance(trace_info, SuggestedQuestionTraceInfo):
self.suggested_question_trace(trace_info)
elif isinstance(trace_info, DatasetRetrievalTraceInfo):
self.dataset_retrieval_trace(trace_info)
elif isinstance(trace_info, ToolTraceInfo):
self.tool_trace(trace_info)
elif isinstance(trace_info, GenerateNameTraceInfo):
pass
def api_check(self) -> bool:
return self.trace_client.api_check()
def get_project_url(self) -> str:
return self.trace_client.get_project_url()
def workflow_trace(self, trace_info: WorkflowTraceInfo) -> None:
"""Handle workflow tracing by coordinating data retrieval and span construction."""
try:
trace_id = TencentTraceUtils.convert_to_trace_id(trace_info.workflow_run_id)
links = []
if trace_info.trace_id:
links.append(TencentTraceUtils.create_link(trace_info.trace_id))
user_id = self._get_user_id(trace_info)
workflow_spans = TencentSpanBuilder.build_workflow_spans(trace_info, trace_id, str(user_id), links)
for span in workflow_spans:
self.trace_client.add_span(span)
self._process_workflow_nodes(trace_info, trace_id)
except Exception:
logger.exception("[Tencent APM] Failed to process workflow trace")
def message_trace(self, trace_info: MessageTraceInfo) -> None:
"""Handle message tracing."""
try:
trace_id = TencentTraceUtils.convert_to_trace_id(trace_info.message_id)
user_id = self._get_user_id(trace_info)
links = []
if trace_info.trace_id:
links.append(TencentTraceUtils.create_link(trace_info.trace_id))
message_span = TencentSpanBuilder.build_message_span(trace_info, trace_id, str(user_id), links)
self.trace_client.add_span(message_span)
except Exception:
logger.exception("[Tencent APM] Failed to process message trace")
def tool_trace(self, trace_info: ToolTraceInfo) -> None:
"""Handle tool tracing."""
try:
parent_span_id = None
trace_root_id = None
if trace_info.message_id:
parent_span_id = TencentTraceUtils.convert_to_span_id(trace_info.message_id, "message")
trace_root_id = trace_info.message_id
if parent_span_id and trace_root_id:
trace_id = TencentTraceUtils.convert_to_trace_id(trace_root_id)
tool_span = TencentSpanBuilder.build_tool_span(trace_info, trace_id, parent_span_id)
self.trace_client.add_span(tool_span)
except Exception:
logger.exception("[Tencent APM] Failed to process tool trace")
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo) -> None:
"""Handle dataset retrieval tracing."""
try:
parent_span_id = None
trace_root_id = None
if trace_info.message_id:
parent_span_id = TencentTraceUtils.convert_to_span_id(trace_info.message_id, "message")
trace_root_id = trace_info.message_id
if parent_span_id and trace_root_id:
trace_id = TencentTraceUtils.convert_to_trace_id(trace_root_id)
retrieval_span = TencentSpanBuilder.build_retrieval_span(trace_info, trace_id, parent_span_id)
self.trace_client.add_span(retrieval_span)
except Exception:
logger.exception("[Tencent APM] Failed to process dataset retrieval trace")
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo) -> None:
"""Handle suggested question tracing"""
try:
logger.info("[Tencent APM] Processing suggested question trace")
except Exception:
logger.exception("[Tencent APM] Failed to process suggested question trace")
def _process_workflow_nodes(self, trace_info: WorkflowTraceInfo, trace_id: int) -> None:
"""Process workflow node executions."""
try:
workflow_span_id = TencentTraceUtils.convert_to_span_id(trace_info.workflow_run_id, "workflow")
node_executions = self._get_workflow_node_executions(trace_info)
for node_execution in node_executions:
try:
node_span = self._build_workflow_node_span(node_execution, trace_id, trace_info, workflow_span_id)
if node_span:
self.trace_client.add_span(node_span)
if node_execution.node_type == NodeType.LLM:
self._record_llm_metrics(node_execution)
except Exception:
logger.exception("[Tencent APM] Failed to process node execution: %s", node_execution.id)
except Exception:
logger.exception("[Tencent APM] Failed to process workflow nodes")
def _build_workflow_node_span(
self, node_execution: WorkflowNodeExecution, trace_id: int, trace_info: WorkflowTraceInfo, workflow_span_id: int
) -> SpanData | None:
"""Build span for different node types"""
try:
if node_execution.node_type == NodeType.LLM:
return TencentSpanBuilder.build_workflow_llm_span(
trace_id, workflow_span_id, trace_info, node_execution
)
elif node_execution.node_type == NodeType.KNOWLEDGE_RETRIEVAL:
return TencentSpanBuilder.build_workflow_retrieval_span(
trace_id, workflow_span_id, trace_info, node_execution
)
elif node_execution.node_type == NodeType.TOOL:
return TencentSpanBuilder.build_workflow_tool_span(
trace_id, workflow_span_id, trace_info, node_execution
)
else:
# Handle all other node types as generic tasks
return TencentSpanBuilder.build_workflow_task_span(
trace_id, workflow_span_id, trace_info, node_execution
)
except Exception:
logger.debug(
"[Tencent APM] Error building span for node %s: %s",
node_execution.id,
node_execution.node_type,
exc_info=True,
)
return None
def _get_workflow_node_executions(self, trace_info: WorkflowTraceInfo) -> list[WorkflowNodeExecution]:
"""Retrieve workflow node executions from database."""
try:
session_maker = sessionmaker(bind=db.engine)
with Session(db.engine, expire_on_commit=False) as session:
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
app_stmt = select(App).where(App.id == app_id)
app = session.scalar(app_stmt)
if not app:
raise ValueError(f"App with id {app_id} not found")
if not app.created_by:
raise ValueError(f"App with id {app_id} has no creator")
account_stmt = select(Account).where(Account.id == app.created_by)
service_account = session.scalar(account_stmt)
if not service_account:
raise ValueError(f"Creator account not found for app {app_id}")
current_tenant = (
session.query(TenantAccountJoin).filter_by(account_id=service_account.id, current=True).first()
)
if not current_tenant:
raise ValueError(f"Current tenant not found for account {service_account.id}")
service_account.set_tenant_id(current_tenant.tenant_id)
repository = SQLAlchemyWorkflowNodeExecutionRepository(
session_factory=session_maker,
user=service_account,
app_id=trace_info.metadata.get("app_id"),
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)
executions = repository.get_by_workflow_run(workflow_run_id=trace_info.workflow_run_id)
return list(executions)
except Exception:
logger.exception("[Tencent APM] Failed to get workflow node executions")
return []
def _get_user_id(self, trace_info: BaseTraceInfo) -> str:
"""Get user ID from trace info."""
try:
tenant_id = None
user_id = None
if isinstance(trace_info, (WorkflowTraceInfo, GenerateNameTraceInfo)):
tenant_id = trace_info.tenant_id
if hasattr(trace_info, "metadata") and trace_info.metadata:
user_id = trace_info.metadata.get("user_id")
if user_id and tenant_id:
stmt = (
select(Account.name)
.join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id)
.where(Account.id == user_id, TenantAccountJoin.tenant_id == tenant_id)
)
session_maker = sessionmaker(bind=db.engine)
with session_maker() as session:
account_name = session.scalar(stmt)
return account_name or str(user_id)
elif user_id:
return str(user_id)
return "anonymous"
except Exception:
logger.exception("[Tencent APM] Failed to get user ID")
return "unknown"
def _record_llm_metrics(self, node_execution: WorkflowNodeExecution) -> None:
"""Record LLM performance metrics"""
try:
if not hasattr(self.trace_client, "record_llm_duration"):
return
process_data = node_execution.process_data or {}
usage = process_data.get("usage", {})
latency_s = float(usage.get("latency", 0.0))
if latency_s > 0:
attributes = {
"provider": process_data.get("model_provider", ""),
"model": process_data.get("model_name", ""),
"span_kind": "GENERATION",
}
self.trace_client.record_llm_duration(latency_s, attributes)
except Exception:
logger.debug("[Tencent APM] Failed to record LLM metrics")
def __del__(self):
"""Ensure proper cleanup on garbage collection."""
try:
if hasattr(self, "trace_client"):
self.trace_client.shutdown()
except Exception:
pass

View File

@@ -0,0 +1,65 @@
"""
Utility functions for Tencent APM tracing
"""
import hashlib
import random
import uuid
from datetime import datetime
from typing import cast
from opentelemetry.trace import Link, SpanContext, TraceFlags
class TencentTraceUtils:
"""Utility class for common tracing operations."""
INVALID_SPAN_ID = 0x0000000000000000
INVALID_TRACE_ID = 0x00000000000000000000000000000000
@staticmethod
def convert_to_trace_id(uuid_v4: str | None) -> int:
try:
uuid_obj = uuid.UUID(uuid_v4) if uuid_v4 else uuid.uuid4()
except Exception as e:
raise ValueError(f"Invalid UUID input: {e}")
return cast(int, uuid_obj.int)
@staticmethod
def convert_to_span_id(uuid_v4: str | None, span_type: str) -> int:
try:
uuid_obj = uuid.UUID(uuid_v4) if uuid_v4 else uuid.uuid4()
except Exception as e:
raise ValueError(f"Invalid UUID input: {e}")
combined_key = f"{uuid_obj.hex}-{span_type}"
hash_bytes = hashlib.sha256(combined_key.encode("utf-8")).digest()
return int.from_bytes(hash_bytes[:8], byteorder="big", signed=False)
@staticmethod
def generate_span_id() -> int:
span_id = random.getrandbits(64)
while span_id == TencentTraceUtils.INVALID_SPAN_ID:
span_id = random.getrandbits(64)
return span_id
@staticmethod
def convert_datetime_to_nanoseconds(start_time: datetime | None) -> int:
if start_time is None:
start_time = datetime.now()
timestamp_in_seconds = start_time.timestamp()
return int(timestamp_in_seconds * 1e9)
@staticmethod
def create_link(trace_id_str: str) -> Link:
try:
trace_id = int(trace_id_str, 16) if len(trace_id_str) == 32 else cast(int, uuid.UUID(trace_id_str).int)
except (ValueError, TypeError):
trace_id = cast(int, uuid.uuid4().int)
span_context = SpanContext(
trace_id=trace_id,
span_id=TencentTraceUtils.INVALID_SPAN_ID,
is_remote=False,
trace_flags=TraceFlags(TraceFlags.SAMPLED),
)
return Link(span_context)