feat: knowledge pipeline (#25360)

Signed-off-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: twwu <twwu@dify.ai>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: jyong <718720800@qq.com>
Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com>
Co-authored-by: QuantumGhost <obelisk.reg+git@gmail.com>
Co-authored-by: lyzno1 <yuanyouhuilyz@gmail.com>
Co-authored-by: quicksand <quicksandzn@gmail.com>
Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com>
Co-authored-by: lyzno1 <92089059+lyzno1@users.noreply.github.com>
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
Co-authored-by: Yongtao Huang <yongtaoh2022@gmail.com>
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: Hanqing Zhao <sherry9277@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Harry <xh001x@hotmail.com>
This commit is contained in:
-LAN-
2025-09-18 12:49:10 +08:00
committed by GitHub
parent 7dadb33003
commit 85cda47c70
1772 changed files with 102407 additions and 31710 deletions

View File

@@ -0,0 +1,175 @@
import contextvars
import json
import logging
import time
import uuid
from collections.abc import Mapping
from concurrent.futures import ThreadPoolExecutor
from typing import Any
import click
from celery import shared_task # type: ignore
from flask import current_app, g
from sqlalchemy.orm import Session, sessionmaker
from core.app.entities.app_invoke_entities import InvokeFrom, RagPipelineGenerateEntity
from core.app.entities.rag_pipeline_invoke_entities import RagPipelineInvokeEntity
from core.repositories.factory import DifyCoreRepositoryFactory
from extensions.ext_database import db
from models.account import Account, Tenant
from models.dataset import Pipeline
from models.enums import WorkflowRunTriggeredFrom
from models.workflow import Workflow, WorkflowNodeExecutionTriggeredFrom
from services.file_service import FileService
@shared_task(queue="priority_pipeline")
def priority_rag_pipeline_run_task(
rag_pipeline_invoke_entities_file_id: str,
tenant_id: str,
):
"""
Async Run rag pipeline
:param rag_pipeline_invoke_entities: Rag pipeline invoke entities
rag_pipeline_invoke_entities include:
:param pipeline_id: Pipeline ID
:param user_id: User ID
:param tenant_id: Tenant ID
:param workflow_id: Workflow ID
:param invoke_from: Invoke source (debugger, published, etc.)
:param streaming: Whether to stream results
:param datasource_type: Type of datasource
:param datasource_info: Datasource information dict
:param batch: Batch identifier
:param document_id: Document ID (optional)
:param start_node_id: Starting node ID
:param inputs: Input parameters dict
:param workflow_execution_id: Workflow execution ID
:param workflow_thread_pool_id: Thread pool ID for workflow execution
"""
# run with threading, thread pool size is 10
try:
start_at = time.perf_counter()
rag_pipeline_invoke_entities_content = FileService(db.engine).get_file_content(
rag_pipeline_invoke_entities_file_id
)
rag_pipeline_invoke_entities = json.loads(rag_pipeline_invoke_entities_content)
# Get Flask app object for thread context
flask_app = current_app._get_current_object() # type: ignore
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for rag_pipeline_invoke_entity in rag_pipeline_invoke_entities:
# Submit task to thread pool with Flask app
future = executor.submit(run_single_rag_pipeline_task, rag_pipeline_invoke_entity, flask_app)
futures.append(future)
# Wait for all tasks to complete
for future in futures:
try:
future.result() # This will raise any exceptions that occurred in the thread
except Exception:
logging.exception("Error in pipeline task")
end_at = time.perf_counter()
logging.info(
click.style(
f"tenant_id: {tenant_id} , Rag pipeline run completed. Latency: {end_at - start_at}s", fg="green"
)
)
except Exception:
logging.exception(click.style(f"Error running rag pipeline, tenant_id: {tenant_id}", fg="red"))
raise
finally:
file_service = FileService(db.engine)
file_service.delete_file(rag_pipeline_invoke_entities_file_id)
db.session.close()
def run_single_rag_pipeline_task(rag_pipeline_invoke_entity: Mapping[str, Any], flask_app):
"""Run a single RAG pipeline task within Flask app context."""
# Create Flask application context for this thread
with flask_app.app_context():
try:
rag_pipeline_invoke_entity_model = RagPipelineInvokeEntity(**rag_pipeline_invoke_entity)
user_id = rag_pipeline_invoke_entity_model.user_id
tenant_id = rag_pipeline_invoke_entity_model.tenant_id
pipeline_id = rag_pipeline_invoke_entity_model.pipeline_id
workflow_id = rag_pipeline_invoke_entity_model.workflow_id
streaming = rag_pipeline_invoke_entity_model.streaming
workflow_execution_id = rag_pipeline_invoke_entity_model.workflow_execution_id
workflow_thread_pool_id = rag_pipeline_invoke_entity_model.workflow_thread_pool_id
application_generate_entity = rag_pipeline_invoke_entity_model.application_generate_entity
with Session(db.engine, expire_on_commit=False) as session:
# Load required entities
account = session.query(Account).where(Account.id == user_id).first()
if not account:
raise ValueError(f"Account {user_id} not found")
tenant = session.query(Tenant).where(Tenant.id == tenant_id).first()
if not tenant:
raise ValueError(f"Tenant {tenant_id} not found")
account.current_tenant = tenant
pipeline = session.query(Pipeline).where(Pipeline.id == pipeline_id).first()
if not pipeline:
raise ValueError(f"Pipeline {pipeline_id} not found")
workflow = session.query(Workflow).where(Workflow.id == pipeline.workflow_id).first()
if not workflow:
raise ValueError(f"Workflow {pipeline.workflow_id} not found")
if workflow_execution_id is None:
workflow_execution_id = str(uuid.uuid4())
# Create application generate entity from dict
entity = RagPipelineGenerateEntity(**application_generate_entity)
# Create workflow repositories
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=account,
app_id=entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_RUN,
)
workflow_node_execution_repository = (
DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=account,
app_id=entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.RAG_PIPELINE_RUN,
)
)
# Set the user directly in g for preserve_flask_contexts
g._login_user = account
# Copy context for passing to pipeline generator
context = contextvars.copy_context()
# Direct execution without creating another thread
# Since we're already in a thread pool, no need for nested threading
from core.app.apps.pipeline.pipeline_generator import PipelineGenerator
pipeline_generator = PipelineGenerator()
# Using protected method intentionally for async execution
pipeline_generator._generate( # type: ignore[attr-defined]
flask_app=flask_app,
context=context,
pipeline=pipeline,
workflow_id=workflow_id,
user=account,
application_generate_entity=entity,
invoke_from=InvokeFrom.PUBLISHED,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
workflow_thread_pool_id=workflow_thread_pool_id,
)
except Exception:
logging.exception("Error in priority pipeline task")
raise

View File

@@ -0,0 +1,196 @@
import contextvars
import json
import logging
import time
import uuid
from collections.abc import Mapping
from concurrent.futures import ThreadPoolExecutor
from typing import Any
import click
from celery import shared_task # type: ignore
from flask import current_app, g
from sqlalchemy.orm import Session, sessionmaker
from core.app.entities.app_invoke_entities import InvokeFrom, RagPipelineGenerateEntity
from core.app.entities.rag_pipeline_invoke_entities import RagPipelineInvokeEntity
from core.repositories.factory import DifyCoreRepositoryFactory
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.account import Account, Tenant
from models.dataset import Pipeline
from models.enums import WorkflowRunTriggeredFrom
from models.workflow import Workflow, WorkflowNodeExecutionTriggeredFrom
from services.file_service import FileService
@shared_task(queue="pipeline")
def rag_pipeline_run_task(
rag_pipeline_invoke_entities_file_id: str,
tenant_id: str,
):
"""
Async Run rag pipeline
:param rag_pipeline_invoke_entities: Rag pipeline invoke entities
rag_pipeline_invoke_entities include:
:param pipeline_id: Pipeline ID
:param user_id: User ID
:param tenant_id: Tenant ID
:param workflow_id: Workflow ID
:param invoke_from: Invoke source (debugger, published, etc.)
:param streaming: Whether to stream results
:param datasource_type: Type of datasource
:param datasource_info: Datasource information dict
:param batch: Batch identifier
:param document_id: Document ID (optional)
:param start_node_id: Starting node ID
:param inputs: Input parameters dict
:param workflow_execution_id: Workflow execution ID
:param workflow_thread_pool_id: Thread pool ID for workflow execution
"""
# run with threading, thread pool size is 10
try:
start_at = time.perf_counter()
rag_pipeline_invoke_entities_content = FileService(db.engine).get_file_content(
rag_pipeline_invoke_entities_file_id
)
rag_pipeline_invoke_entities = json.loads(rag_pipeline_invoke_entities_content)
# Get Flask app object for thread context
flask_app = current_app._get_current_object() # type: ignore
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for rag_pipeline_invoke_entity in rag_pipeline_invoke_entities:
# Submit task to thread pool with Flask app
future = executor.submit(run_single_rag_pipeline_task, rag_pipeline_invoke_entity, flask_app)
futures.append(future)
# Wait for all tasks to complete
for future in futures:
try:
future.result() # This will raise any exceptions that occurred in the thread
except Exception:
logging.exception("Error in pipeline task")
end_at = time.perf_counter()
logging.info(
click.style(
f"tenant_id: {tenant_id} , Rag pipeline run completed. Latency: {end_at - start_at}s", fg="green"
)
)
except Exception:
logging.exception(click.style(f"Error running rag pipeline, tenant_id: {tenant_id}", fg="red"))
raise
finally:
tenant_self_pipeline_task_queue = f"tenant_self_pipeline_task_queue:{tenant_id}"
tenant_pipeline_task_key = f"tenant_pipeline_task:{tenant_id}"
# Check if there are waiting tasks in the queue
# Use rpop to get the next task from the queue (FIFO order)
next_file_id = redis_client.rpop(tenant_self_pipeline_task_queue)
if next_file_id:
# Process the next waiting task
# Keep the flag set to indicate a task is running
redis_client.setex(tenant_pipeline_task_key, 60 * 60, 1)
rag_pipeline_run_task.delay( # type: ignore
rag_pipeline_invoke_entities_file_id=next_file_id.decode("utf-8")
if isinstance(next_file_id, bytes)
else next_file_id,
tenant_id=tenant_id,
)
else:
# No more waiting tasks, clear the flag
redis_client.delete(tenant_pipeline_task_key)
file_service = FileService(db.engine)
file_service.delete_file(rag_pipeline_invoke_entities_file_id)
db.session.close()
def run_single_rag_pipeline_task(rag_pipeline_invoke_entity: Mapping[str, Any], flask_app):
"""Run a single RAG pipeline task within Flask app context."""
# Create Flask application context for this thread
with flask_app.app_context():
try:
rag_pipeline_invoke_entity_model = RagPipelineInvokeEntity(**rag_pipeline_invoke_entity)
user_id = rag_pipeline_invoke_entity_model.user_id
tenant_id = rag_pipeline_invoke_entity_model.tenant_id
pipeline_id = rag_pipeline_invoke_entity_model.pipeline_id
workflow_id = rag_pipeline_invoke_entity_model.workflow_id
streaming = rag_pipeline_invoke_entity_model.streaming
workflow_execution_id = rag_pipeline_invoke_entity_model.workflow_execution_id
workflow_thread_pool_id = rag_pipeline_invoke_entity_model.workflow_thread_pool_id
application_generate_entity = rag_pipeline_invoke_entity_model.application_generate_entity
with Session(db.engine) as session:
# Load required entities
account = session.query(Account).where(Account.id == user_id).first()
if not account:
raise ValueError(f"Account {user_id} not found")
tenant = session.query(Tenant).where(Tenant.id == tenant_id).first()
if not tenant:
raise ValueError(f"Tenant {tenant_id} not found")
account.current_tenant = tenant
pipeline = session.query(Pipeline).where(Pipeline.id == pipeline_id).first()
if not pipeline:
raise ValueError(f"Pipeline {pipeline_id} not found")
workflow = session.query(Workflow).where(Workflow.id == pipeline.workflow_id).first()
if not workflow:
raise ValueError(f"Workflow {pipeline.workflow_id} not found")
if workflow_execution_id is None:
workflow_execution_id = str(uuid.uuid4())
# Create application generate entity from dict
entity = RagPipelineGenerateEntity(**application_generate_entity)
# Create workflow repositories
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=account,
app_id=entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_RUN,
)
workflow_node_execution_repository = (
DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=account,
app_id=entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.RAG_PIPELINE_RUN,
)
)
# Set the user directly in g for preserve_flask_contexts
g._login_user = account
# Copy context for passing to pipeline generator
context = contextvars.copy_context()
# Direct execution without creating another thread
# Since we're already in a thread pool, no need for nested threading
from core.app.apps.pipeline.pipeline_generator import PipelineGenerator
pipeline_generator = PipelineGenerator()
# Using protected method intentionally for async execution
pipeline_generator._generate( # type: ignore[attr-defined]
flask_app=flask_app,
context=context,
pipeline=pipeline,
workflow_id=workflow_id,
user=account,
application_generate_entity=entity,
invoke_from=InvokeFrom.PUBLISHED,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
workflow_thread_pool_id=workflow_thread_pool_id,
)
except Exception:
logging.exception("Error in pipeline task")
raise