mirror of
https://github.com/langgenius/dify.git
synced 2026-02-11 10:01:30 -05:00
161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
import logging
|
|
from typing import Any
|
|
|
|
from core.sandbox.entities.config import AppAssets
|
|
from core.skill.entities.api_entities import NodeSkillInfo
|
|
from core.skill.entities.skill_document import SkillDocument
|
|
from core.skill.entities.tool_dependencies import ToolDependencies, ToolDependency
|
|
from core.skill.skill_compiler import SkillCompiler
|
|
from core.skill.skill_manager import SkillManager
|
|
from core.workflow.enums import NodeType
|
|
from models.model import App
|
|
from models.workflow import Workflow
|
|
from services.app_asset_service import AppAssetService
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SkillService:
|
|
"""
|
|
Service for managing and retrieving skill information from workflows.
|
|
"""
|
|
|
|
@staticmethod
|
|
def get_node_skill_info(app: App, workflow: Workflow, node_id: str, user_id: str) -> NodeSkillInfo:
|
|
"""
|
|
Get skill information for a specific node in a workflow.
|
|
|
|
Args:
|
|
app: The app model
|
|
workflow: The workflow containing the node
|
|
node_id: The ID of the node to get skill info for
|
|
user_id: The user ID for asset access
|
|
|
|
Returns:
|
|
NodeSkillInfo containing tool dependencies for the node
|
|
"""
|
|
node_config = workflow.get_node_config_by_id(node_id)
|
|
node_data = node_config.get("data", {})
|
|
node_type = node_data.get("type", "")
|
|
|
|
# Only LLM nodes support skills currently
|
|
if node_type != NodeType.LLM.value:
|
|
return NodeSkillInfo(node_id=node_id)
|
|
|
|
# Check if node has any skill prompts
|
|
if not SkillService._has_skill(node_data):
|
|
return NodeSkillInfo(node_id=node_id)
|
|
|
|
tool_dependencies = SkillService._extract_tool_dependencies_with_compiler(app, node_data, user_id)
|
|
|
|
return NodeSkillInfo(
|
|
node_id=node_id,
|
|
tool_dependencies=tool_dependencies,
|
|
)
|
|
|
|
@staticmethod
|
|
def get_workflow_skills(app: App, workflow: Workflow, user_id: str) -> list[NodeSkillInfo]:
|
|
"""
|
|
Get skill information for all nodes in a workflow that have skill references.
|
|
|
|
Args:
|
|
app: The app model
|
|
workflow: The workflow to scan for skills
|
|
user_id: The user ID for asset access
|
|
|
|
Returns:
|
|
List of NodeSkillInfo for nodes that have skill references
|
|
"""
|
|
result: list[NodeSkillInfo] = []
|
|
|
|
# Only scan LLM nodes since they're the only ones that support skills
|
|
for node_id, node_data in workflow.walk_nodes(specific_node_type=NodeType.LLM):
|
|
has_skill = SkillService._has_skill(dict(node_data))
|
|
|
|
if has_skill:
|
|
tool_dependencies = SkillService._extract_tool_dependencies_with_compiler(app, dict(node_data), user_id)
|
|
result.append(
|
|
NodeSkillInfo(
|
|
node_id=node_id,
|
|
tool_dependencies=tool_dependencies,
|
|
)
|
|
)
|
|
|
|
return result
|
|
|
|
@staticmethod
|
|
def _has_skill(node_data: dict[str, Any]) -> bool:
|
|
"""Check if node has any skill prompts."""
|
|
prompt_template = node_data.get("prompt_template", [])
|
|
if isinstance(prompt_template, list):
|
|
for prompt in prompt_template:
|
|
if isinstance(prompt, dict) and prompt.get("skill", False):
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
def _extract_tool_dependencies_with_compiler(
|
|
app: App, node_data: dict[str, Any], user_id: str
|
|
) -> list[ToolDependency]:
|
|
"""Extract tool dependencies using SkillCompiler.
|
|
|
|
This method loads the SkillBundle and AppAssetFileTree, then uses
|
|
SkillCompiler.compile_one() to properly extract tool dependencies
|
|
including transitive dependencies from referenced skill files.
|
|
"""
|
|
# Get the draft assets to obtain assets_id and file_tree
|
|
assets = AppAssetService.get_assets(
|
|
tenant_id=app.tenant_id,
|
|
app_id=app.id,
|
|
user_id=user_id,
|
|
is_draft=True,
|
|
)
|
|
|
|
if not assets:
|
|
logger.warning("No draft assets found for app_id=%s", app.id)
|
|
return []
|
|
|
|
assets_id = assets.id
|
|
file_tree = assets.asset_tree
|
|
|
|
# Load the skill bundle
|
|
try:
|
|
bundle = SkillManager.load_bundle(
|
|
tenant_id=app.tenant_id,
|
|
app_id=app.id,
|
|
assets_id=assets_id,
|
|
)
|
|
except Exception as e:
|
|
logger.debug("Failed to load skill bundle for app_id=%s: %s", app.id, e)
|
|
# Return empty if bundle doesn't exist (no skills compiled yet)
|
|
return []
|
|
|
|
# Compile each skill prompt and collect tool dependencies
|
|
compiler = SkillCompiler()
|
|
tool_deps_list: list[ToolDependencies] = []
|
|
|
|
prompt_template = node_data.get("prompt_template", [])
|
|
if isinstance(prompt_template, list):
|
|
for prompt in prompt_template:
|
|
if isinstance(prompt, dict) and prompt.get("skill", False):
|
|
text: str = prompt.get("text", "")
|
|
metadata: dict[str, Any] = prompt.get("metadata") or {}
|
|
|
|
skill_entry = compiler.compile_one(
|
|
bundle=bundle,
|
|
document=SkillDocument(skill_id="anonymous", content=text, metadata=metadata),
|
|
file_tree=file_tree,
|
|
base_path=AppAssets.PATH,
|
|
)
|
|
tool_deps_list.append(skill_entry.tools)
|
|
|
|
if not tool_deps_list:
|
|
return []
|
|
|
|
# Merge all tool dependencies
|
|
from functools import reduce
|
|
|
|
merged = reduce(lambda x, y: x.merge(y), tool_deps_list)
|
|
|
|
return merged.dependencies
|