Files
dify/api/controllers/console/app/generator.py

399 lines
17 KiB
Python

from flask_restx import Resource, fields, reqparse
from controllers.console import console_ns
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.wraps import account_initialization_required, setup_required
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.llm_generator.llm_generator import LLMGenerator
from core.model_runtime.errors.invoke import InvokeError
from libs.login import current_account_with_tenant, login_required
from services.workflow_service import WorkflowService
@console_ns.route("/rule-generate")
class RuleGenerateApi(Resource):
@console_ns.doc("generate_rule_config")
@console_ns.doc(description="Generate rule configuration using LLM")
@console_ns.expect(
console_ns.model(
"RuleGenerateRequest",
{
"instruction": fields.String(required=True, description="Rule generation instruction"),
"model_config": fields.Raw(required=True, description="Model configuration"),
"no_variable": fields.Boolean(required=True, default=False, description="Whether to exclude variables"),
},
)
)
@console_ns.response(200, "Rule configuration generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = (
reqparse.RequestParser()
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
.add_argument("no_variable", type=bool, required=True, default=False, location="json")
)
args = parser.parse_args()
_, current_tenant_id = current_account_with_tenant()
try:
rules = LLMGenerator.generate_rule_config(
tenant_id=current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
no_variable=args["no_variable"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return rules
@console_ns.route("/rule-code-generate")
class RuleCodeGenerateApi(Resource):
@console_ns.doc("generate_rule_code")
@console_ns.doc(description="Generate code rules using LLM")
@console_ns.expect(
console_ns.model(
"RuleCodeGenerateRequest",
{
"instruction": fields.String(required=True, description="Code generation instruction"),
"model_config": fields.Raw(required=True, description="Model configuration"),
"no_variable": fields.Boolean(required=True, default=False, description="Whether to exclude variables"),
"code_language": fields.String(
default="javascript", description="Programming language for code generation"
),
},
)
)
@console_ns.response(200, "Code rules generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = (
reqparse.RequestParser()
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
.add_argument("no_variable", type=bool, required=True, default=False, location="json")
.add_argument("code_language", type=str, required=False, default="javascript", location="json")
)
args = parser.parse_args()
_, current_tenant_id = current_account_with_tenant()
try:
code_result = LLMGenerator.generate_code(
tenant_id=current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
code_language=args["code_language"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return code_result
@console_ns.route("/rule-structured-output-generate")
class RuleStructuredOutputGenerateApi(Resource):
@console_ns.doc("generate_structured_output")
@console_ns.doc(description="Generate structured output rules using LLM")
@console_ns.expect(
console_ns.model(
"StructuredOutputGenerateRequest",
{
"instruction": fields.String(required=True, description="Structured output generation instruction"),
"model_config": fields.Raw(required=True, description="Model configuration"),
},
)
)
@console_ns.response(200, "Structured output generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = (
reqparse.RequestParser()
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
)
args = parser.parse_args()
_, current_tenant_id = current_account_with_tenant()
try:
structured_output = LLMGenerator.generate_structured_output(
tenant_id=current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return structured_output
@console_ns.route("/instruction-generate")
class InstructionGenerateApi(Resource):
@console_ns.doc("generate_instruction")
@console_ns.doc(description="Generate instruction for workflow nodes or general use")
@console_ns.expect(
console_ns.model(
"InstructionGenerateRequest",
{
"type": fields.String(
required=True,
description="Request type",
enum=[
"legacy_prompt_generate",
"workflow_prompt_generate",
"workflow_code_generate",
"workflow_prompt_edit",
"workflow_code_edit",
"memory_template_generate",
"memory_instruction_generate",
"memory_template_edit",
"memory_instruction_edit",
]
),
"flow_id": fields.String(description="Workflow/Flow ID"),
"node_id": fields.String(description="Node ID (optional)"),
"current": fields.String(description="Current content"),
"language": fields.String(
default="javascript",
description="Programming language (javascript/python)"
),
"instruction": fields.String(required=True, description="User instruction"),
"model_config": fields.Raw(required=True, description="Model configuration"),
"ideal_output": fields.String(description="Expected ideal output"),
},
)
)
@console_ns.response(200, "Instruction generated successfully")
@console_ns.response(400, "Invalid request parameters or flow/workflow not found")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = (
reqparse.RequestParser()
.add_argument("type", type=str, required=True, nullable=False, location="json")
.add_argument("flow_id", type=str, required=False, default="", location="json")
.add_argument("node_id", type=str, required=False, default="", location="json")
.add_argument("current", type=str, required=False, default="", location="json")
.add_argument("language", type=str, required=False, default="javascript", location="json")
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
.add_argument("ideal_output", type=str, required=False, default="", location="json")
)
args = parser.parse_args()
_, current_tenant_id = current_account_with_tenant()
try:
# Validate parameters
is_valid, error_message = self._validate_params(args["type"], args)
if not is_valid:
return {"error": error_message}, 400
# Route based on type
return self._handle_by_type(args["type"], args, current_tenant_id)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
def _validate_params(self, request_type: str, args: dict) -> tuple[bool, str]:
"""
Validate request parameters
Returns:
(is_valid, error_message)
"""
# All types require instruction and model_config
if not args.get("instruction"):
return False, "instruction is required"
if not args.get("model_config"):
return False, "model_config is required"
# Edit types require flow_id and current
if request_type.endswith("_edit"):
if not args.get("flow_id"):
return False, f"{request_type} requires flow_id"
if not args.get("current"):
return False, f"{request_type} requires current content"
# Code generate requires language
if request_type == "workflow_code_generate":
if args.get("language") not in ["python", "javascript"]:
return False, "language must be 'python' or 'javascript'"
return True, ""
def _handle_by_type(self, request_type: str, args: dict, tenant_id: str):
"""
Route handling based on type
"""
match request_type:
case "legacy_prompt_generate":
# Legacy prompt generation doesn't exist, this is actually an edit
if not args.get("flow_id"):
return {"error": "legacy_prompt_generate requires flow_id"}, 400
return LLMGenerator.instruction_modify_legacy(
tenant_id=tenant_id,
flow_id=args["flow_id"],
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
ideal_output=args["ideal_output"],
)
case "workflow_prompt_generate":
return LLMGenerator.generate_rule_config(
tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
no_variable=True,
)
case "workflow_code_generate":
return LLMGenerator.generate_code(
tenant_id=tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
code_language=args["language"],
)
case "workflow_prompt_edit":
return LLMGenerator.instruction_modify_workflow(
tenant_id=tenant_id,
flow_id=args["flow_id"],
node_id=args["node_id"],
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
ideal_output=args["ideal_output"],
workflow_service=WorkflowService(),
)
case "workflow_code_edit":
# Code edit uses the same workflow edit logic
return LLMGenerator.instruction_modify_workflow(
tenant_id=tenant_id,
flow_id=args["flow_id"],
node_id=args["node_id"],
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
ideal_output=args["ideal_output"],
workflow_service=WorkflowService(),
)
case "memory_template_generate":
return LLMGenerator.generate_memory_template(
tenant_id=tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
)
case "memory_instruction_generate":
return LLMGenerator.generate_memory_instruction(
tenant_id=tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
)
case "memory_template_edit":
return LLMGenerator.edit_memory_template(
tenant_id=tenant_id,
flow_id=args["flow_id"],
node_id=args.get("node_id") or None,
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
ideal_output=args["ideal_output"],
)
case "memory_instruction_edit":
return LLMGenerator.edit_memory_instruction(
tenant_id=tenant_id,
flow_id=args["flow_id"],
node_id=args.get("node_id") or None,
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
ideal_output=args["ideal_output"],
)
case _:
return {"error": f"Invalid request type: {request_type}"}, 400
@console_ns.route("/instruction-generate/template")
class InstructionGenerationTemplateApi(Resource):
@console_ns.doc("get_instruction_template")
@console_ns.doc(description="Get instruction generation template")
@console_ns.expect(
console_ns.model(
"InstructionTemplateRequest",
{
"instruction": fields.String(required=True, description="Template instruction"),
"ideal_output": fields.String(description="Expected ideal output"),
},
)
)
@console_ns.response(200, "Template retrieved successfully")
@console_ns.response(400, "Invalid request parameters")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser().add_argument("type", type=str, required=True, default=False, location="json")
args = parser.parse_args()
match args["type"]:
case "prompt":
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_PROMPT
return {"data": INSTRUCTION_GENERATE_TEMPLATE_PROMPT}
case "code":
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_CODE
return {"data": INSTRUCTION_GENERATE_TEMPLATE_CODE}
case _:
raise ValueError(f"Invalid type: {args['type']}")