mirror of
https://github.com/langgenius/dify.git
synced 2025-12-19 17:27:16 -05:00
399 lines
17 KiB
Python
399 lines
17 KiB
Python
from flask_restx import Resource, fields, reqparse
|
|
|
|
from controllers.console import console_ns
|
|
from controllers.console.app.error import (
|
|
CompletionRequestError,
|
|
ProviderModelCurrentlyNotSupportError,
|
|
ProviderNotInitializeError,
|
|
ProviderQuotaExceededError,
|
|
)
|
|
from controllers.console.wraps import account_initialization_required, setup_required
|
|
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
|
from core.llm_generator.llm_generator import LLMGenerator
|
|
from core.model_runtime.errors.invoke import InvokeError
|
|
from libs.login import current_account_with_tenant, login_required
|
|
from services.workflow_service import WorkflowService
|
|
|
|
|
|
@console_ns.route("/rule-generate")
|
|
class RuleGenerateApi(Resource):
|
|
@console_ns.doc("generate_rule_config")
|
|
@console_ns.doc(description="Generate rule configuration using LLM")
|
|
@console_ns.expect(
|
|
console_ns.model(
|
|
"RuleGenerateRequest",
|
|
{
|
|
"instruction": fields.String(required=True, description="Rule generation instruction"),
|
|
"model_config": fields.Raw(required=True, description="Model configuration"),
|
|
"no_variable": fields.Boolean(required=True, default=False, description="Whether to exclude variables"),
|
|
},
|
|
)
|
|
)
|
|
@console_ns.response(200, "Rule configuration generated successfully")
|
|
@console_ns.response(400, "Invalid request parameters")
|
|
@console_ns.response(402, "Provider quota exceeded")
|
|
@setup_required
|
|
@login_required
|
|
@account_initialization_required
|
|
def post(self):
|
|
parser = (
|
|
reqparse.RequestParser()
|
|
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
|
|
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
|
|
.add_argument("no_variable", type=bool, required=True, default=False, location="json")
|
|
)
|
|
args = parser.parse_args()
|
|
_, current_tenant_id = current_account_with_tenant()
|
|
|
|
try:
|
|
rules = LLMGenerator.generate_rule_config(
|
|
tenant_id=current_tenant_id,
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
no_variable=args["no_variable"],
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
except QuotaExceededError:
|
|
raise ProviderQuotaExceededError()
|
|
except ModelCurrentlyNotSupportError:
|
|
raise ProviderModelCurrentlyNotSupportError()
|
|
except InvokeError as e:
|
|
raise CompletionRequestError(e.description)
|
|
|
|
return rules
|
|
|
|
|
|
@console_ns.route("/rule-code-generate")
|
|
class RuleCodeGenerateApi(Resource):
|
|
@console_ns.doc("generate_rule_code")
|
|
@console_ns.doc(description="Generate code rules using LLM")
|
|
@console_ns.expect(
|
|
console_ns.model(
|
|
"RuleCodeGenerateRequest",
|
|
{
|
|
"instruction": fields.String(required=True, description="Code generation instruction"),
|
|
"model_config": fields.Raw(required=True, description="Model configuration"),
|
|
"no_variable": fields.Boolean(required=True, default=False, description="Whether to exclude variables"),
|
|
"code_language": fields.String(
|
|
default="javascript", description="Programming language for code generation"
|
|
),
|
|
},
|
|
)
|
|
)
|
|
@console_ns.response(200, "Code rules generated successfully")
|
|
@console_ns.response(400, "Invalid request parameters")
|
|
@console_ns.response(402, "Provider quota exceeded")
|
|
@setup_required
|
|
@login_required
|
|
@account_initialization_required
|
|
def post(self):
|
|
parser = (
|
|
reqparse.RequestParser()
|
|
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
|
|
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
|
|
.add_argument("no_variable", type=bool, required=True, default=False, location="json")
|
|
.add_argument("code_language", type=str, required=False, default="javascript", location="json")
|
|
)
|
|
args = parser.parse_args()
|
|
_, current_tenant_id = current_account_with_tenant()
|
|
|
|
try:
|
|
code_result = LLMGenerator.generate_code(
|
|
tenant_id=current_tenant_id,
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
code_language=args["code_language"],
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
except QuotaExceededError:
|
|
raise ProviderQuotaExceededError()
|
|
except ModelCurrentlyNotSupportError:
|
|
raise ProviderModelCurrentlyNotSupportError()
|
|
except InvokeError as e:
|
|
raise CompletionRequestError(e.description)
|
|
|
|
return code_result
|
|
|
|
|
|
@console_ns.route("/rule-structured-output-generate")
|
|
class RuleStructuredOutputGenerateApi(Resource):
|
|
@console_ns.doc("generate_structured_output")
|
|
@console_ns.doc(description="Generate structured output rules using LLM")
|
|
@console_ns.expect(
|
|
console_ns.model(
|
|
"StructuredOutputGenerateRequest",
|
|
{
|
|
"instruction": fields.String(required=True, description="Structured output generation instruction"),
|
|
"model_config": fields.Raw(required=True, description="Model configuration"),
|
|
},
|
|
)
|
|
)
|
|
@console_ns.response(200, "Structured output generated successfully")
|
|
@console_ns.response(400, "Invalid request parameters")
|
|
@console_ns.response(402, "Provider quota exceeded")
|
|
@setup_required
|
|
@login_required
|
|
@account_initialization_required
|
|
def post(self):
|
|
parser = (
|
|
reqparse.RequestParser()
|
|
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
|
|
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
|
|
)
|
|
args = parser.parse_args()
|
|
_, current_tenant_id = current_account_with_tenant()
|
|
|
|
try:
|
|
structured_output = LLMGenerator.generate_structured_output(
|
|
tenant_id=current_tenant_id,
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
except QuotaExceededError:
|
|
raise ProviderQuotaExceededError()
|
|
except ModelCurrentlyNotSupportError:
|
|
raise ProviderModelCurrentlyNotSupportError()
|
|
except InvokeError as e:
|
|
raise CompletionRequestError(e.description)
|
|
|
|
return structured_output
|
|
|
|
|
|
@console_ns.route("/instruction-generate")
|
|
class InstructionGenerateApi(Resource):
|
|
@console_ns.doc("generate_instruction")
|
|
@console_ns.doc(description="Generate instruction for workflow nodes or general use")
|
|
@console_ns.expect(
|
|
console_ns.model(
|
|
"InstructionGenerateRequest",
|
|
{
|
|
"type": fields.String(
|
|
required=True,
|
|
description="Request type",
|
|
enum=[
|
|
"legacy_prompt_generate",
|
|
"workflow_prompt_generate",
|
|
"workflow_code_generate",
|
|
"workflow_prompt_edit",
|
|
"workflow_code_edit",
|
|
"memory_template_generate",
|
|
"memory_instruction_generate",
|
|
"memory_template_edit",
|
|
"memory_instruction_edit",
|
|
]
|
|
),
|
|
"flow_id": fields.String(description="Workflow/Flow ID"),
|
|
"node_id": fields.String(description="Node ID (optional)"),
|
|
"current": fields.String(description="Current content"),
|
|
"language": fields.String(
|
|
default="javascript",
|
|
description="Programming language (javascript/python)"
|
|
),
|
|
"instruction": fields.String(required=True, description="User instruction"),
|
|
"model_config": fields.Raw(required=True, description="Model configuration"),
|
|
"ideal_output": fields.String(description="Expected ideal output"),
|
|
},
|
|
)
|
|
)
|
|
@console_ns.response(200, "Instruction generated successfully")
|
|
@console_ns.response(400, "Invalid request parameters or flow/workflow not found")
|
|
@console_ns.response(402, "Provider quota exceeded")
|
|
@setup_required
|
|
@login_required
|
|
@account_initialization_required
|
|
def post(self):
|
|
parser = (
|
|
reqparse.RequestParser()
|
|
.add_argument("type", type=str, required=True, nullable=False, location="json")
|
|
.add_argument("flow_id", type=str, required=False, default="", location="json")
|
|
.add_argument("node_id", type=str, required=False, default="", location="json")
|
|
.add_argument("current", type=str, required=False, default="", location="json")
|
|
.add_argument("language", type=str, required=False, default="javascript", location="json")
|
|
.add_argument("instruction", type=str, required=True, nullable=False, location="json")
|
|
.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
|
|
.add_argument("ideal_output", type=str, required=False, default="", location="json")
|
|
)
|
|
args = parser.parse_args()
|
|
_, current_tenant_id = current_account_with_tenant()
|
|
|
|
try:
|
|
# Validate parameters
|
|
is_valid, error_message = self._validate_params(args["type"], args)
|
|
if not is_valid:
|
|
return {"error": error_message}, 400
|
|
|
|
# Route based on type
|
|
return self._handle_by_type(args["type"], args, current_tenant_id)
|
|
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
except QuotaExceededError:
|
|
raise ProviderQuotaExceededError()
|
|
except ModelCurrentlyNotSupportError:
|
|
raise ProviderModelCurrentlyNotSupportError()
|
|
except InvokeError as e:
|
|
raise CompletionRequestError(e.description)
|
|
|
|
def _validate_params(self, request_type: str, args: dict) -> tuple[bool, str]:
|
|
"""
|
|
Validate request parameters
|
|
|
|
Returns:
|
|
(is_valid, error_message)
|
|
"""
|
|
# All types require instruction and model_config
|
|
if not args.get("instruction"):
|
|
return False, "instruction is required"
|
|
if not args.get("model_config"):
|
|
return False, "model_config is required"
|
|
|
|
# Edit types require flow_id and current
|
|
if request_type.endswith("_edit"):
|
|
if not args.get("flow_id"):
|
|
return False, f"{request_type} requires flow_id"
|
|
if not args.get("current"):
|
|
return False, f"{request_type} requires current content"
|
|
|
|
# Code generate requires language
|
|
if request_type == "workflow_code_generate":
|
|
if args.get("language") not in ["python", "javascript"]:
|
|
return False, "language must be 'python' or 'javascript'"
|
|
|
|
return True, ""
|
|
|
|
def _handle_by_type(self, request_type: str, args: dict, tenant_id: str):
|
|
"""
|
|
Route handling based on type
|
|
"""
|
|
match request_type:
|
|
case "legacy_prompt_generate":
|
|
# Legacy prompt generation doesn't exist, this is actually an edit
|
|
if not args.get("flow_id"):
|
|
return {"error": "legacy_prompt_generate requires flow_id"}, 400
|
|
return LLMGenerator.instruction_modify_legacy(
|
|
tenant_id=tenant_id,
|
|
flow_id=args["flow_id"],
|
|
current=args["current"],
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
ideal_output=args["ideal_output"],
|
|
)
|
|
|
|
case "workflow_prompt_generate":
|
|
return LLMGenerator.generate_rule_config(
|
|
tenant_id,
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
no_variable=True,
|
|
)
|
|
|
|
case "workflow_code_generate":
|
|
return LLMGenerator.generate_code(
|
|
tenant_id=tenant_id,
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
code_language=args["language"],
|
|
)
|
|
|
|
case "workflow_prompt_edit":
|
|
return LLMGenerator.instruction_modify_workflow(
|
|
tenant_id=tenant_id,
|
|
flow_id=args["flow_id"],
|
|
node_id=args["node_id"],
|
|
current=args["current"],
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
ideal_output=args["ideal_output"],
|
|
workflow_service=WorkflowService(),
|
|
)
|
|
|
|
case "workflow_code_edit":
|
|
# Code edit uses the same workflow edit logic
|
|
return LLMGenerator.instruction_modify_workflow(
|
|
tenant_id=tenant_id,
|
|
flow_id=args["flow_id"],
|
|
node_id=args["node_id"],
|
|
current=args["current"],
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
ideal_output=args["ideal_output"],
|
|
workflow_service=WorkflowService(),
|
|
)
|
|
|
|
case "memory_template_generate":
|
|
return LLMGenerator.generate_memory_template(
|
|
tenant_id=tenant_id,
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
)
|
|
|
|
case "memory_instruction_generate":
|
|
return LLMGenerator.generate_memory_instruction(
|
|
tenant_id=tenant_id,
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
)
|
|
|
|
case "memory_template_edit":
|
|
return LLMGenerator.edit_memory_template(
|
|
tenant_id=tenant_id,
|
|
flow_id=args["flow_id"],
|
|
node_id=args.get("node_id") or None,
|
|
current=args["current"],
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
ideal_output=args["ideal_output"],
|
|
)
|
|
|
|
case "memory_instruction_edit":
|
|
return LLMGenerator.edit_memory_instruction(
|
|
tenant_id=tenant_id,
|
|
flow_id=args["flow_id"],
|
|
node_id=args.get("node_id") or None,
|
|
current=args["current"],
|
|
instruction=args["instruction"],
|
|
model_config=args["model_config"],
|
|
ideal_output=args["ideal_output"],
|
|
)
|
|
|
|
case _:
|
|
return {"error": f"Invalid request type: {request_type}"}, 400
|
|
|
|
|
|
@console_ns.route("/instruction-generate/template")
|
|
class InstructionGenerationTemplateApi(Resource):
|
|
@console_ns.doc("get_instruction_template")
|
|
@console_ns.doc(description="Get instruction generation template")
|
|
@console_ns.expect(
|
|
console_ns.model(
|
|
"InstructionTemplateRequest",
|
|
{
|
|
"instruction": fields.String(required=True, description="Template instruction"),
|
|
"ideal_output": fields.String(description="Expected ideal output"),
|
|
},
|
|
)
|
|
)
|
|
@console_ns.response(200, "Template retrieved successfully")
|
|
@console_ns.response(400, "Invalid request parameters")
|
|
@setup_required
|
|
@login_required
|
|
@account_initialization_required
|
|
def post(self):
|
|
parser = reqparse.RequestParser().add_argument("type", type=str, required=True, default=False, location="json")
|
|
args = parser.parse_args()
|
|
match args["type"]:
|
|
case "prompt":
|
|
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_PROMPT
|
|
|
|
return {"data": INSTRUCTION_GENERATE_TEMPLATE_PROMPT}
|
|
case "code":
|
|
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_CODE
|
|
|
|
return {"data": INSTRUCTION_GENERATE_TEMPLATE_CODE}
|
|
case _:
|
|
raise ValueError(f"Invalid type: {args['type']}")
|