Files
dify/api/core/workflow
Stream e0082dbf18 revert: add tools for output in agent mode
feat: hide output tools and improve JSON formatting for structured output
feat: hide output tools and improve JSON formatting for structured output
fix: handle prompt template correctly to extract selectors for step run
fix: emit StreamChunkEvent correctly for sandbox agent
chore: better debug message
fix: incorrect output tool runtime selection
fix: type issues
fix: align parameter list
fix: align parameter list
fix: hide internal builtin providers from tool list
vibe: implement file structured output
vibe: implement file structured output
fix: refix parameter for tool
fix: crash
fix: crash
refactor: remove union types
fix: type check
Merge branch 'feat/structured-output-with-sandbox' into feat/support-agent-sandbox
fix: provide json as text
fix: provide json as text
fix: get AgentResult correctly
fix: provides correct prompts, tools and terminal predicates
fix: provides correct prompts, tools and terminal predicates
fix: circular import
feat: support structured output in sandbox and tool mode
2026-02-04 21:43:53 +08:00
..
2026-01-08 17:36:21 +08:00
2024-04-08 18:51:46 +08:00
2025-09-18 12:49:10 +08:00
2025-09-18 12:49:10 +08:00

Workflow

Project Overview

This is the workflow graph engine module of Dify, implementing a queue-based distributed workflow execution system. The engine handles agentic AI workflows with support for parallel execution, node iteration, conditional logic, and external command control.

Architecture

Core Components

The graph engine follows a layered architecture with strict dependency rules:

  1. Graph Engine (graph_engine/) - Orchestrates workflow execution

    • Manager - External control interface for stop/pause/resume commands
    • Worker - Node execution runtime
    • Command Processing - Handles control commands (abort, pause, resume)
    • Event Management - Event propagation and layer notifications
    • Graph Traversal - Edge processing and skip propagation
    • Response Coordinator - Path tracking and session management
    • Layers - Pluggable middleware (debug logging, execution limits)
    • Command Channels - Communication channels (InMemory, Redis)
  2. Graph (graph/) - Graph structure and runtime state

    • Graph Template - Workflow definition
    • Edge - Node connections with conditions
    • Runtime State Protocol - State management interface
  3. Nodes (nodes/) - Node implementations

    • Base - Abstract node classes and variable parsing
    • Specific Nodes - LLM, Agent, Code, HTTP Request, Iteration, Loop, etc.
  4. Events (node_events/) - Event system

    • Base - Event protocols
    • Node Events - Node lifecycle events
  5. Entities (entities/) - Domain models

    • Variable Pool - Variable storage
    • Graph Init Params - Initialization configuration

Key Design Patterns

Command Channel Pattern

External workflow control via Redis or in-memory channels:

# Send stop command to running workflow
channel = RedisChannel(redis_client, f"workflow:{task_id}:commands")
channel.send_command(AbortCommand(reason="User requested"))

Layer System

Extensible middleware for cross-cutting concerns:

engine = GraphEngine(graph)
engine.layer(DebugLoggingLayer(level="INFO"))
engine.layer(ExecutionLimitsLayer(max_nodes=100))

engine.layer() binds the read-only runtime state before execution, so layer hooks can assume graph_runtime_state is available.

Event-Driven Architecture

All node executions emit events for monitoring and integration:

  • NodeRunStartedEvent - Node execution begins
  • NodeRunSucceededEvent - Node completes successfully
  • NodeRunFailedEvent - Node encounters error
  • GraphRunStartedEvent/GraphRunCompletedEvent - Workflow lifecycle

Variable Pool

Centralized variable storage with namespace isolation:

# Variables scoped by node_id
pool.add(["node1", "output"], value)
result = pool.get(["node1", "output"])

Import Architecture Rules

The codebase enforces strict layering via import-linter:

  1. Workflow Layers (top to bottom):

    • graph_engine → graph_events → graph → nodes → node_events → entities
  2. Graph Engine Internal Layers:

    • orchestration → command_processing → event_management → graph_traversal → domain
  3. Domain Isolation:

    • Domain models cannot import from infrastructure layers
  4. Command Channel Independence:

    • InMemory and Redis channels must remain independent

Common Tasks

Adding a New Node Type

  1. Create node class in nodes/<node_type>/
  2. Inherit from BaseNode or appropriate base class
  3. Implement _run() method
  4. Register in nodes/node_mapping.py
  5. Add tests in tests/unit_tests/core/workflow/nodes/

Implementing a Custom Layer

  1. Create class inheriting from Layer base
  2. Override lifecycle methods: on_graph_start(), on_event(), on_graph_end()
  3. Add to engine via engine.layer()

Debugging Workflow Execution

Enable debug logging layer:

debug_layer = DebugLoggingLayer(
    level="DEBUG",
    include_inputs=True,
    include_outputs=True
)